江蘇省鎮江市揚中學市2025屆高中畢業班零診模擬考試數學試題含解析_第1頁
江蘇省鎮江市揚中學市2025屆高中畢業班零診模擬考試數學試題含解析_第2頁
江蘇省鎮江市揚中學市2025屆高中畢業班零診模擬考試數學試題含解析_第3頁
江蘇省鎮江市揚中學市2025屆高中畢業班零診模擬考試數學試題含解析_第4頁
江蘇省鎮江市揚中學市2025屆高中畢業班零診模擬考試數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鎮江市揚中學市2025屆高中畢業班零診模擬考試數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數字表示該位置上小正方體的個數,則該幾何體的左視圖是()A. B.C. D.2.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.3.要使式子有意義,x的取值范圍是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠04.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=05.如圖是二次函數y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④6.下列說法中,錯誤的是()A.兩個全等三角形一定是相似形B.兩個等腰三角形一定相似C.兩個等邊三角形一定相似D.兩個等腰直角三角形一定相似7.下列各點中,在二次函數的圖象上的是()A. B. C. D.8.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結果保留小數點后兩位)(參考數據:3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里9.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長為()A. B. C. D.10.如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是()A.①②③ B.①②④ C.①③④ D.②③④二、填空題(本大題共6個小題,每小題3分,共18分)11.二次函數中的自變量與函數值的部分對應值如下表:…………則的解為________.12.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為_____.13.如圖,在△ABC中,∠ACB=90°,點D是CB邊上一點,過點D作DE⊥AB于點E,點F是AD的中點,連結EF、FC、CE.若AD=2,∠CFE=90°,則CE=_____.14.如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,4),則點B4的坐標為_____,點B2017的坐標為_____.15.老師在黑板上書寫了一個正確的演算過程,隨后用手掌捂住了一個多項式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:則所捂住的多項式是___.16.如圖,矩形ABCD的面積為20cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B;…;依此類推,則平行四邊形AO4C5B的面積為_____.三、解答題(共8題,共72分)17.(8分)“綠水青山就是金山銀山”,北京市民積極參與義務植樹活動.小武同學為了了解自己小區300戶家庭在2018年4月份義務植樹的數量,進行了抽樣調查,隨即抽取了其中30戶家庭,收集的數據如下(單位:棵):112323233433433534344545343456(1)對以上數據進行整理、描述和分析:①繪制如下的統計圖,請補充完整;②這30戶家庭2018年4月份義務植樹數量的平均數是______,眾數是______;(2)“互聯網+全民義務植樹”是新時代首都全民義務植樹組織形式和盡責方式的一大創新,2018年首次推出義務植樹網上預約服務,小武同學所調查的這30戶家庭中有7戶家庭采用了網上預約義務植樹這種方式,由此可以估計該小區采用這種形式的家庭有______戶.18.(8分)2018年“清明節”前夕,宜賓某花店用1000元購進若干菊花,很快售完,接著又用2500元購進第二批花,已知第二批所購花的數量是第一批所購花數的2倍,且每朵花的進價比第一批的進價多元.(1)第一批花每束的進價是多少元.(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500元(不考慮其他因素),第二批每朵菊花的售價至少是多少元?19.(8分)某超市對今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進行了統計,并繪制如圖所示的扇形統計圖和條形統計圖.根據圖中信息解答下列問題:該超市“元旦”期間共銷售個綠色雞蛋,A品牌綠色雞蛋在扇形統計圖中所對應的扇形圓心角是度;補全條形統計圖;如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數?20.(8分)我市某中學舉辦“網絡安全知識答題競賽”,初、高中部根據初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.平均分(分)中位數(分)眾數(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據圖示計算出a、b、c的值;結合兩隊成績的平均數和中位數進行分析,哪個隊的決賽成績較好?計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩定.21.(8分)今年義烏市準備爭創全國衛生城市,某小區積極響應,決定在小區內安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.(1)求溫馨提示牌和垃圾箱的單價各是多少元?(2)該小區至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?22.(10分)一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量(件與銷售價(元/件)之間的函數關系如圖所示.求與之間的函數關系式,并寫出自變量的取值范圍;求每天的銷售利潤W(元與銷售價(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?23.(12分)如圖,某校數學興趣小組要測量大樓AB的高度,他們在點C處測得樓頂B的仰角為32°,再往大樓AB方向前進至點D處測得樓頂B的仰角為48°,CD=96m,其中點A、D、C在同一直線上.求AD的長和大樓AB的高度(結果精確到2m)參考數據:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.7324.如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經過點B,與直線l的另一個交點為C(4,n).(1)求n的值和拋物線的解析式;(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】根據俯視圖中每列正方形的個數,再畫出從正面的,左面看得到的圖形:幾何體的左視圖是:

.故選D.2、A【解析】

設黃球有x個,根據摸出一個球是藍球的概率是,得出黃球的個數,再根據概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設袋子中黃球有x個,根據題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數與總情況數之比.得到所求的情況數是解決本題的關鍵.3、D【解析】

根據二次根式由意義的條件是:被開方數大于或等于1,和分母不等于1,即可求解.【詳解】根據題意得:,解得:x≥-1且x≠1.故選:D.本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數是非負數.4、D【解析】試題解析:含有兩個未知數,不是整式方程,C沒有二次項.故選D.點睛:一元二次方程需要滿足三個條件:含有一個未知數,未知數的最高次數是2,整式方程.5、C【解析】∵二次函數的圖象的開口向上,∴a>0。∵二次函數的圖象y軸的交點在y軸的負半軸上,∴c<0。∵二次函數圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確。∵1a﹣b=1a﹣1a=0,因此說法②正確。∵二次函數y=∴圖象與x軸的另一個交點的坐標是(1,0)。∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤。∵二次函數y=∴點(﹣5,y1)關于對稱軸的對稱點的坐標是(3,y1),∵當x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。6、B【解析】

根據相似圖形的定義,結合選項中提到的圖形,對選項一一分析,選出正確答案.【詳解】解:A、兩個全等的三角形一定相似,正確;B、兩個等腰三角形一定相似,錯誤,等腰三角形的形狀不一定相同;C、兩個等邊三角形一定相似;正確,等邊三角形形狀相同,只是大小不同;D、兩個等腰直角三角形一定相似,正確,等腰直角三角形形狀相同,只是大小不同.故選B.本題考查的是相似形的定義,聯系圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.特別注意,本題是選擇錯誤的,一定要看清楚題.7、D【解析】

將各選項的點逐一代入即可判斷.【詳解】解:當x=1時,y=-1,故點不在二次函數的圖象;當x=2時,y=-4,故點和點不在二次函數的圖象;當x=-2時,y=-4,故點在二次函數的圖象;故答案為:D.本題考查了判斷一個點是否在二次函數圖象上,解題的關鍵是將點代入函數解析式.8、B【解析】

根據題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據三角形內角和和等腰三角形的性質得出BA=BE,AD=DE,設BD=x,Rt△ABD中,根據勾股定理得AD=DE=

3x,AB=BE=CE=2x,由AC=AD+DE+EC=2

3x+2x=30,解之即可得出答案.【詳解】根據題意畫出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

設BD=x,

在Rt△ABD中,

∴AD=DE=

3x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

3x+2x=30,

∴x=153+1

=

15本題考查了三角形內角和定理與等腰直角三角形的性質,解題的關鍵是熟練的掌握三角形內角和定理與等腰直角三角形的性質.9、B【解析】

連接BF,由折疊可知AE垂直平分BF,根據勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.本題考查的是翻折變換的性質、矩形的性質及勾股定理的應用,掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.10、B【解析】

解:根據作圖過程,利用線段垂直平分線的性質對各選項進行判斷:根據作圖過程可知:PB=CP,∵D為BC的中點,∴PD垂直平分BC,∴①ED⊥BC正確.∵∠ABC=90°,∴PD∥AB.∴E為AC的中點,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正確;③EB平分∠AED錯誤;④ED=AB正確.∴正確的有①②④.故選B.考點:線段垂直平分線的性質.二、填空題(本大題共6個小題,每小題3分,共18分)11、或【解析】

由二次函數y=ax2+bx+c(a≠0)過點(-1,-2),(0,-2),可求得此拋物線的對稱軸,又由此拋物線過點(1,0),即可求得此拋物線與x軸的另一個交點.繼而求得答案.【詳解】解:∵二次函數y=ax2+bx+c(a≠0)過點(-1,-2),(0,-2),∴此拋物線的對稱軸為:直線x=-,∵此拋物線過點(1,0),∴此拋物線與x軸的另一個交點為:(-2,0),∴ax2+bx+c=0的解為:x=-2或1.故答案為x=-2或1.此題考查了拋物線與x軸的交點問題.此題難度適中,注意掌握二次函數的對稱性是解此題的關鍵.12、【解析】

直接利用相似三角形的判定與性質得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(﹣,).故答案為(﹣,).此題主要考查了矩形的性質以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.13、【解析】

根據直角三角形的中點性質結合勾股定理解答即可.【詳解】解:,點F是AD的中點,.故答案為:.此題重點考查學生對勾股定理的理解。熟練掌握勾股定理是解題的關鍵.14、(20,4)(10086,0)【解析】

首先利用勾股定理得出AB的長,進而得出三角形的周長,進而求出B2,B4的橫坐標,進而得出變化規律,即可得出答案.【詳解】解:由題意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的橫坐標為:10,B4的橫坐標為:2×10=20,B2016的橫坐標為:×10=1.∵B2C2=B4C4=OB=4,∴點B4的坐標為(20,4),∴B2017的橫坐標為1++=10086,縱坐標為0,∴點B2017的坐標為:(10086,0).故答案為(20,4)、(10086,0).本題主要考查了點的坐標以及圖形變化類,根據題意得出B點橫坐標變化規律是解題的關鍵.15、x2+7x-4【解析】

設他所捂的多項式為A,則接下來利用去括號法則對其進行去括號,然后合并同類項即可.【詳解】解:設他所捂的多項式為A,則根據題目信息可得他所捂的多項式為故答案為本題是一道關于整數加減運算的題目,解答本題的關鍵是熟練掌握整數的加減運算;16、【解析】試題分析:根據矩形的性質求出△AOB的面積等于矩形ABCD的面積的,求出△AOB的面積,再分別求出、、、的面積,即可得出答案∵四邊形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴,∴,∴,∴,,,∴考點:矩形的性質;平行四邊形的性質點評:本題考查了矩形的性質,平行四邊形的性質,三角形的面積的應用,解此題的關鍵是能根據求出的結果得出規律,注意:等底等高的三角形的面積相等三、解答題(共8題,共72分)17、(1)3.4棵、3棵;(2)1.【解析】

(1)①由已知數據知3棵的有12人、4棵的有8人,據此補全圖形可得;②根據平均數和眾數的定義求解可得;(2)用總戶數乘以樣本中采用了網上預約義務植樹這種方式的戶數所占比例可得.【詳解】解:(1)①由已知數據知3棵的有12人、4棵的有8人,補全圖形如下:②這30戶家庭2018年4月份義務植樹數量的平均數是(棵),眾數為3棵,故答案為:3.4棵、3棵;(2)估計該小區采用這種形式的家庭有戶,故答案為:1.此題考查條形統計圖,加權平均數,眾數,解題關鍵在于利用樣本估計總體.18、(1)2元;(2)第二批花的售價至少為元;【解析】

(1)設第一批花每束的進價是x元,則第二批花每束的進價是(x+0.5)元,根據數量=總價÷單價結合第二批所購花的數量是第一批所購花數的2倍,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)由第二批花的進價比第一批的進價多0.5元可求出第二批花的進價,設第二批菊花的售價為m元,根據利潤=每束花的利潤×數量結合總利潤不低于1500元,即可得出關于m的一元一次不等式,解之即可得出結論.【詳解】(1)設第一批花每束的進價是x元,則第二批花每束的進價是元,根據題意得:,解得:,經檢驗:是原方程的解,且符合題意.答:第一批花每束的進價是2元.(2)由可知第二批菊花的進價為元.設第二批菊花的售價為m元,根據題意得:,解得:.答:第二批花的售價至少為元.本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量之間的關系,正確列出一元一次不等式.19、(1)2400,60;(2)見解析;(3)500【解析】整體分析:(1)由C品牌1200個占總數的50%可得雞蛋的數量,用A品牌占總數的百分比乘以360°即可;(2)計算出B品牌的數量;(3)用B品牌與總數的比乘以1500.解:(1)共銷售綠色雞蛋:1200÷50%=2400個,A品牌所占的圓心角:×360°=60°;故答案為2400,60;(2)B品牌雞蛋的數量為:2400﹣400﹣1200=800個,補全統計圖如圖:(3)分店銷售的B種品牌的綠色雞蛋為:×1500=500個.20、(1)85,85,80;(2)初中部決賽成績較好;(3)初中代表隊選手成績比較穩定.【解析】

分析:(1)根據成績表,結合平均數、眾數、中位數的計算方法進行解答;(2)比較初中部、高中部的平均數和中位數,結合比較結果得出結論;(3)利用方差的計算公式,求出初中部的方差,結合方差的意義判斷哪個代表隊選手的成績較為穩定.【詳解】詳解:(1)初中5名選手的平均分,眾數b=85,高中5名選手的成績是:70,75,80,100,100,故中位數c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數高,故初中部決賽成績較好;(3)=70,∵,∴初中代表隊選手成績比較穩定.本題是一道有關條形統計圖、平均數、眾數、中位數、方差的統計類題目,掌握平均數、眾數、中位數、方差的概念及計算方法是解題的關鍵.21、(1)溫馨提示牌和垃圾箱的單價各是50元和150元;(2)答案見解析【解析】

(1)根據“購買2個溫馨提示牌和3個垃圾箱共需550元”,建立方程求解即可得出結論;(2)根據“費用不超過10000元和至少需要安放48個垃圾箱”,建立不等式即可得出結論.【詳解】(1)設溫情提示牌的單價為x元,則垃圾箱的單價為3x元,根據題意得,2x+3×3x=550,∴x=50,經檢驗,符合題意,∴3x=150元,即:溫馨提示牌和垃圾箱的單價各是50元和150元;(2)設購買溫情提示牌y個(y為正整數),則垃圾箱為(100﹣y)個,根據題意得,意,∴∵y為正整數,∴y為50,51,52,共3中方案;有三種方案:①溫馨提示牌50個,垃圾箱50個,②溫馨提示牌51個,垃圾箱49個,③溫馨提示牌52個,垃圾箱48個,設總費用為w元W=50y+150(100﹣y)=﹣100y+15000,∵k=-100,∴w隨y的增大而減小∴當y=52時,所需資金最少,最少是9800元.此題主要考查了一元一次不等式組,一元一次方程的應用,正確找出相等關系是解本題的關鍵.22、(1)(2),,144元【解析】

(1)利用待定系數法求解可得關于的函數解析式;(2)根據“總利潤每件的利潤銷售量”可得函數解析式,將其配方成頂點式,利用二次函數的性質進一步求解可得.【詳解】(1)設與的函數解析式為,將、代入,得:,解得:,所以與的函數解析式為;(2)根據題意知,,,當時,隨的增大而增大,,當時,取得最大值,最大值為144,答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.本題考查了二次函數的應用,解題的關鍵是熟練掌握待定系數法求函數解析式及根據相等關系列出二次函數解析式及二次函數的性質.23、AD的長約為225m,大樓AB的高約為226m【解析】

首先設大樓AB的高度為xm,在Rt△ABC中利用正切函數的定義可求得,然后根據∠ADB的正切表示出AD的長,又由CD=96m,可得方程,解此方程即可求得答案.【詳解】解:設大樓AB的高度為xm,

在Rt△ABC中,∵∠C=32°,∠BAC=92°,

∴,

在Rt△ABD中,,

∴,

∵CD=AC-AD,CD=96m,

∴,

解得:x≈226,∴

答:大樓AB的高度約為226m,AD的長約為225m.本題考查解直角三角形的應用.要求學生能借助仰角構造直角三角形并解直角三角形,注意數形結合思想與方程思想的應用.24、(1)n=2;y=x2﹣x﹣1;(2)p=;當t=2時,p有最大值;(3)6個,或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論