




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省大連市普蘭店區重點中學2024-2025學年初三下學期第一次聯考數學試題理試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算正確的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2?(﹣a)3=﹣a52.據統計,某住宅樓30戶居民五月份最后一周每天實行垃圾分類的戶數依次是:27,30,29,25,26,28,29,那么這組數據的中位數和眾數分別是()A.25和30 B.25和29 C.28和30 D.28和293.隨著服裝市場競爭日益激烈,某品牌服裝專賣店一款服裝按原售價降價20%,現售價為a元,則原售價為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.454.我國古代數學名著《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.5.某中學籃球隊12名隊員的年齡如下表:年齡:(歲)13141516人數1542關于這12名隊員的年齡,下列說法錯誤的是()A.眾數是14歲 B.極差是3歲 C.中位數是14.5歲 D.平均數是14.8歲6.﹣3的絕對值是()A.﹣3 B.3 C.- D.7.如圖,直線a∥b,直線c與直線a、b分別交于點A、點B,AC⊥AB于點A,交直線b于點C.如果∠1=34°,那么∠2的度數為()A.34° B.56° C.66° D.146°8.下列各數中,為無理數的是()A. B. C. D.9.下列各式中計算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t10.下列現象,能說明“線動成面”的是()A.天空劃過一道流星B.汽車雨刷在擋風玻璃上刷出的痕跡C.拋出一塊小石子,石子在空中飛行的路線D.旋轉一扇門,門在空中運動的痕跡11.某大學生利用課余時間在網上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數關系式為y=–4x+440,要獲得最大利潤,該商品的售價應定為A.60元B.70元C.80元D.90元12.已知是一個單位向量,、是非零向量,那么下列等式正確的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,菱形的邊,,是上一點,,是邊上一動點,將梯形沿直線折疊,的對應點為,當的長度最小時,的長為__________.14.方程=的解是____.15.如圖,已知,,則________.16.若一元二次方程x2﹣2x﹣m=0無實數根,則一次函數y=(m+1)x+m﹣1的圖象不經過第_____象限.17.當a,b互為相反數,則代數式a2+ab﹣2的值為_____.18.如圖,如果四邊形ABCD中,AD=BC=6,點E、F、G分別是AB、BD、AC的中點,那么△EGF面積的最大值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.求證:△ADE∽△ABC;若AD=3,AB=5,求的值.20.(6分)已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.(1)用含x的代數式表示線段CF的長;(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設=y,求y關于x的函數關系式,并寫出它的定義域;(3)當∠ABE的正切值是時,求AB的長.21.(6分)如圖,在中,,是角平分線,平分交于點,經過兩點的交于點,交于點,恰為的直徑.求證:與相切;當時,求的半徑.22.(8分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.23.(8分)如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別在OA,OC上.(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.24.(10分)計算下列各題:(1)tan45°?sin60°?cos30°;(2)sin230°+sin45°?tan30°.25.(10分)某商場經營某種品牌的童裝,購進時的單價是60元.根據市場調查,在一段時間內,銷售單價是80元時,銷售量是200件,而銷售單價每降低1元,就可多售出20件.寫出銷售量y件與銷售單價x元之間的函數關系式;寫出銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數關系式;若童裝廠規定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,則商場銷售該品牌童裝獲得的最大利潤是多少?26.(12分)我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了如圖兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有______人,扇形統計圖中“了解”部分所對應扇形的圓心角為______°.(2)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為_______人.(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.27.(12分)為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調查,根據調査結果繪制了如下尚不完整的統計圖:根據以上信息解答下列問題:這次接受調查的市民總人數是_______人;扇形統計圖中,“電視”所對應的圓心角的度數是_________;請補全條形統計圖;若該市約有80萬人,請你估計其中將“電腦和手機上網”作為“獲取新聞的最主要途徑”的總人數.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】【分析】根據合并同類項,冪的乘方,同底數冪的乘法的計算法則解答.【詳解】A、2a﹣a=a,故本選項錯誤;B、2a與b不是同類項,不能合并,故本選項錯誤;C、(a4)3=a12,故本選項錯誤;D、(﹣a)2?(﹣a)3=﹣a5,故本選項正確,故選D.【點睛】本題考查了合并同類項、冪的乘方、同底數冪的乘法,熟練掌握各運算的運算法則是解題的關鍵.2、D【解析】【分析】根據中位數和眾數的定義進行求解即可得答案.【詳解】對這組數據重新排列順序得,25,26,27,28,29,29,30,處于最中間是數是28,∴這組數據的中位數是28,在這組數據中,29出現的次數最多,∴這組數據的眾數是29,故選D.【點睛】本題考查了中位數和眾數的概念,熟練掌握眾數和中位數的概念是解題的關鍵.一組數據中出現次數最多的數據叫做眾數,一組數據按從小到大(或從大到小)排序后,位于最中間的數(或中間兩數的平均數)是這組數據的中位數.3、C【解析】
根據題意列出代數式,化簡即可得到結果.【詳解】根據題意得:a÷(1?20%)=a÷45=5故答案選:C.本題考查的知識點是列代數式,解題的關鍵是熟練的掌握列代數式.4、C【解析】
設大馬有x匹,小馬有y匹,根據題意可得等量關系:①大馬數+小馬數=100;②大馬拉瓦數+小馬拉瓦數=100,根據等量關系列出方程組即可.【詳解】解:設大馬有x匹,小馬有y匹,由題意得:,故選C.此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.5、D【解析】分別利用極差以及中位數和眾數以及平均數的求法分別分析得出答案.解:由圖表可得:14歲的有5人,故眾數是14,故選項A正確,不合題意;極差是:16﹣13=3,故選項B正確,不合題意;中位數是:14.5,故選項C正確,不合題意;平均數是:(13+14×5+15×4+16×2)÷12≈14.5,故選項D錯誤,符合題意.故選D.“點睛”此題主要考查了極差以及中位數和眾數以及平均數的求法,正確把握相關定義是解題關鍵.6、B【解析】
根據負數的絕對值是它的相反數,可得出答案.【詳解】根據絕對值的性質得:|-1|=1.故選B.本題考查絕對值的性質,需要掌握非負數的絕對值是它本身,負數的絕對值是它的相反數.7、B【解析】分析:先根據平行線的性質得出∠2+∠BAD=180°,再根據垂直的定義求出∠2的度數.詳解:∵直線a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于點A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故選B.點睛:本題主要考查了平行線的性質,解題的關鍵是掌握兩直線平行,同旁內角互補,此題難度不大.8、D【解析】A.=2,是有理數;B.=2,是有理數;C.,是有理數;D.,是無理數,故選D.9、D【解析】試題解析:A、原式計算錯誤,故本選項錯誤;B、原式計算錯誤,故本選項錯誤;C、原式計算錯誤,故本選項錯誤;D、原式計算正確,故本選項正確;故選D.點睛:同底數冪相除,底數不變,指數相減.10、B【解析】
本題是一道關于點、線、面、體的題目,回憶點、線、面、體的知識;【詳解】解:∵A、天空劃過一道流星說明“點動成線”,∴故本選項錯誤.∵B、汽車雨刷在擋風玻璃上刷出的痕跡說明“線動成面”,∴故本選項正確.∵C、拋出一塊小石子,石子在空中飛行的路線說明“點動成線”,∴故本選項錯誤.∵D、旋轉一扇門,門在空中運動的痕跡說明“面動成體”,∴故本選項錯誤.故選B.本題考查了點、線、面、體,準確認識生活實際中的現象是解題的關鍵.點動成線、線動成面、面動成體.11、C【解析】設銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.12、B【解析】
長度不為0的向量叫做非零向量,向量包括長度及方向,而長度等于1個單位長度的向量叫做單位向量,注意單位向量只規定大小沒規定方向,則可分析求解.【詳解】A.由于單位向量只限制長度,不確定方向,故錯誤;B.符合向量的長度及方向,正確;C.得出的是a的方向不是單位向量,故錯誤;D.左邊得出的是a的方向,右邊得出的是b的方向,兩者方向不一定相同,故錯誤.故答案選B.本題考查的知識點是平面向量,解題的關鍵是熟練的掌握平面向量.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】如圖所示,過點作,交于點.在菱形中,∵,且,所以為等邊三角形,.根據“等腰三角形三線合一”可得,因為,所以.在中,根據勾股定理可得,.因為梯形沿直線折疊,點的對應點為,根據翻折的性質可得,點在以點為圓心,為半徑的弧上,則點在上時,的長度最小,此時,因為.所以,所以,所以.點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當C、A′、P在同一條直線時CA′取最值,由此結合直角三角形勾股定理、等邊三角形性質求得此時CQ的長度即可.14、x=1【解析】
觀察可得方程最簡公分母為x(x?1),去分母,轉化為整式方程求解,結果要檢驗.【詳解】方程兩邊同乘x(x?1)得:3x=1(x?1),整理、解得x=1.檢驗:把x=1代入x(x?1)≠2.∴x=1是原方程的解,故答案為x=1.解分式方程的基本思想是把分式方程轉化為整式方程,具體方法是方程兩邊同時乘以最簡公分母,在此過程中有可能會產生增根,增根是轉化后整式的根,不是原方程的根,因此要注意檢驗.15、65°【解析】
根據兩直線平行,同旁內角互補求出∠3,再根據三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解.【詳解】∵m∥n,∠1=105°,∴∠3=180°?∠1=180°?105°=75°∴∠α=∠2?∠3=140°?75°=65°故答案為:65°.此題考查平行線的性質,解題關鍵在于利用同旁內角互補求出∠3.16、一【解析】∵一元二次方程x2-2x-m=0無實數根,
∴△=4+4m<0,解得m<-1,
∴m+1<0,m-1<0,
∴一次函數y=(m+1)x+m-1的圖象經過二三四象限,不經過第一象限.
故答案是:一.17、﹣1.【解析】分析:由已知易得:a+b=0,再把代數式a1+ab-1化為為a(a+b)-1即可求得其值了.詳解:∵a與b互為相反數,∴a+b=0,∴a1+ab-1=a(a+b)-1=0-1=-1.故答案為:-1.點睛:知道“互為相反數的兩數的和為0”及“能夠把a1+ab-1化為為a(a+b)-1”是正確解答本題的關鍵.18、4.1.【解析】
取CD的值中點M,連接GM,FM.首先證明四邊形EFMG是菱形,推出當EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,由此可得結論.【詳解】解:取CD的值中點M,連接GM,FM.∵AG=CG,AE=EB,∴GE是△ABC的中位線∴EG=BC,同理可證:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四邊形EFMG是菱形,∴當EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,∴△EGF的面積的最大值為S四邊形EFMG=4.1,故答案為4.1.本題主要考查菱形的判定和性質,利用了三角形中位線定理,掌握菱形的判定:四條邊都相等的四邊形是菱形是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).【解析】
(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,從而可證明∠AED=∠ACB,進而可證明△ADE∽△ABC;(2)△ADE∽△ABC,,又易證△EAF∽△CAG,所以,從而可求解.【詳解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考點:相似三角形的判定20、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.【解析】
試題分析:(1)根據等腰直角三角形的性質,求得∠DAC=∠ACD=45°,進而根據兩角對應相等的兩三角形相似,可得△CEF∽△CAE,然后根據相似三角形的性質和勾股定理可求解;(2)根據相似三角形的判定與性質,由三角形的周長比可求解;(3)由(2)中的相似三角形的對應邊成比例,可求出AB的關系,然后可由∠ABE的正切值求解.試題解析:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根據勾股定理得,CE=,∵CA=,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE=,∴x=,∴AB=x+2=.21、(1)證明見解析;(2).【解析】
(1)連接OM,證明OM∥BE,再結合等腰三角形的性質說明AE⊥BE,進而證明OM⊥AE;(2)結合已知求出AB,再證明△AOM∽△ABE,利用相似三角形的性質計算.【詳解】(1)連接OM,則OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵點M在圓O上,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=4,cosC=∴BE=2,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB==6,設⊙O的半徑為r,則AO=6-r,∵OM∥BC,∴△AOM∽△ABE,∴∴,∴,解得,∴的半徑為.本題考查了切線的判定;等腰三角形的性質;相似三角形的判定與性質;解直角三角形等知識,綜合性較強,正確添加輔助線,熟練運用相關知識是解題的關鍵.22、(1)見解析;(2)見解析.【解析】
(1)先判定,可得,再根據是的中線,即可得到,依據,即可得出四邊形是平行四邊形;(2)先判定,即可得到,依據,可得根據是的中線,可得,進而得出四邊形是矩形.【詳解】證明:(1)是的中點,,,,又,,,又是的中線,,又,四邊形是平行四邊形;(2),,∴,即,,又,,又是的中線,,又四邊形是平行四邊形,四邊形是矩形.本題主要考查了平行四邊形、矩形的判定,等腰三角形的性質以及相似三角形的性質的運用,解題時注意:對角線相等的平行四邊形是矩形.23、(1)見解析;(2)見解析.【解析】試題分析:(1)選取①②,利用ASA判定△BEO≌△DFO;也可選取②③,利用AAS判定△BEO≌△DFO;還可選取①③,利用SAS判定△BEO≌△DFO;(2)根據△BEO≌△DFO可得EO=FO,BO=DO,再根據等式的性質可得AO=CO,根據兩條對角線互相平分的四邊形是平行四邊形可得結論.試題解析:證明:(1)選取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四邊形ABCD是平行四邊形.點睛:此題主要考查了平行四邊形的判定,以及全等三角形的判定,關鍵是掌握兩條對角線互相平分的四邊形是平行四邊形.24、(1);(2).【解析】
(1)原式=1﹣×=1﹣=;(2)原式=×+×=.本題考查特殊角的三角函數值,熟練掌握每個特殊角的三角函數值是解此題的關鍵.25、(1);(2);(3)最多獲利4480元.【解析】
(1)銷售量y為200件加增加的件數(80﹣x)×20;(2)利潤w等于單件利潤×銷售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函數的性質得到w=﹣20x2+3000x﹣108000的對稱軸為x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根據二次函數的性質得到當76≤x≤78時,W隨x的增大而減小,把x=76代入計算即可得到商場銷售該品牌童裝獲得的最大利潤.【詳解】(1)根據題意得,y=200+(80﹣x)×20=﹣20x+1800,所以銷售量y件與銷售單價x元之間的函數關系式為y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以銷售該品牌童裝獲得的利潤w元與銷售單價x元之間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 默契中考語文作文
- 物流搬運設備選型指南考核試卷
- 描寫北京初二上冊語文作文
- 健身器材制造業資本運作與投融資策略考核試卷
- 殘疾人權益倡導與法律援助考核試卷
- 空氣流量測量考核試卷
- 柑橘種植園農業產業鏈優化策略考核試卷
- 玻璃保溫容器行業人才培養與選拔考核試卷
- 傾聽高三語文作文
- 滾動軸承市場與發展趨勢考核試卷
- 市政工程管線之間及其構筑物之間最小水平距離要求
- 數字經濟學-教學案例及答案 唐要家
- 【S鎮35kV變電站一次系統設計(論文)14000字】
- V帶傳動設計說明書
- 酒店投標書范本
- 與農戶的收購協議書范本
- GB/T 30819-2024機器人用諧波齒輪減速器
- 中國特種兵課件
- 梁板結構:雙向板
- 吊籃高處作業安全交底
- 彩票物流配送服務投標方案(技術方案)
評論
0/150
提交評論