




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省無錫市各地重點中學2024-2025學年初三下學期期末考試數學試題文試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊2.如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,則電線桿AB的高度為()A. B. C. D.3.某校為了了解七年級女同學的800米跑步情況,隨機抽取部分女同學進行800米跑測試,按照成績分為優秀、良好、合格、不合格四個等級,繪制了如圖所示統計圖.該校七年級有400名女生,則估計800米跑不合格的約有()A.2人 B.16人C.20人 D.40人4.已知二次函數圖象上部分點的坐標對應值列表如下:x…-3-2-1012…y…2-1-2-127…則該函數圖象的對稱軸是()A.x=-3 B.x=-2 C.x=-1 D.x=05.關于的分式方程解為,則常數的值為()A. B. C. D.6.函數y=x2+bx+c與y=x的圖象如圖所示,有以下結論:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④當1<x<3時,x2+(b﹣1)x+c<1.其中正確的個數為A.1 B.2 C.3 D.47.估計-1的值在()A.0到1之間 B.1到2之間 C.2到3之間 D.3至4之間8.計算±的值為()A.±3 B.±9 C.3 D.99.若一次函數y=(2m﹣3)x﹣1+m的圖象不經過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤10.下列性質中菱形不一定具有的性質是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形11.若0<m<2,則關于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情況是()A.無實數根B.有兩個正根C.有兩個根,且都大于﹣3mD.有兩個根,其中一根大于﹣m12.下列命題中,錯誤的是()A.三角形的兩邊之和大于第三邊B.三角形的外角和等于360°C.等邊三角形既是軸對稱圖形,又是中心對稱圖形D.三角形的一條中線能將三角形分成面積相等的兩部分二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A1,B1,C1,D1,E1,F1分別是正六邊形ABCDEF六條邊的中點,連接AB1,BC1,CD1,DE1,EF1,FA1后得到六邊形GHIJKL,則S六邊形GHIJKI:S六邊形ABCDEF的值為____.14.如圖,在平面直角坐標系中有一正方形AOBC,反比例函數經過正方形AOBC對角線的交點,半徑為()的圓內切于△ABC,則k的值為________.15.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發,點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發開始到__________秒時,點P和點Q的距離是10cm.16.若am=2,an=3,則am+2n=______.17.如圖,等邊△ABC的邊長為6,∠ABC,∠ACB的角平分線交于點D,過點D作EF∥BC,交AB、CD于點E、F,則EF的長度為_____.18.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,對稱軸為直線x=的拋物線經過點A(6,0)和B(0,4).(1)求拋物線解析式及頂點坐標;(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;(3)①當四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.20.(6分)湯姆斯杯世界男子羽毛球團體賽小組賽比賽規則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.(1)若前四局雙方戰成2:2,那么甲隊最終獲勝的概率是__________;(2)現甲隊在前兩局比賽中已取得2:0的領先,那么甲隊最終獲勝的概率是多少?21.(6分)如圖,已知矩形ABCD中,連接AC,請利用尺規作圖法在對角線AC上求作一點E使得△ABC∽△CDE.(保留作圖痕跡不寫作法)22.(8分)已知:不等式≤2+x(1)求不等式的解;(2)若實數a滿足a>2,說明a是否是該不等式的解.23.(8分)如圖,在的矩形方格紙中,每個小正方形的邊長均為,線段的兩個端點均在小正方形的頂點上.在圖中畫出以線段為底邊的等腰,其面積為,點在小正方形的頂點上;在圖中面出以線段為一邊的,其面積為,點和點均在小正方形的頂點上;連接,并直接寫出線段的長.24.(10分)如圖,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求證:AC=AE+BC.25.(10分)為進一步深化基教育課程改革,構建符合素質教育要求的學校課程體系,某學校自主開發了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.學生小紅計劃選修兩門課程,請寫出所有可能的選法;若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?26.(12分)國家發改委公布的《商品房銷售明碼標價規定》,從2011年5月1日起商品房銷售實行一套一標價.商品房銷售價格明碼標價后,可以自行降價、打折銷售,但漲價必須重新申報.某市某樓盤準備以每平方米5000元的均價對外銷售,由于新政策的出臺,購房都持幣觀望.為了加快資金周轉,房地產開發商對價格經過兩次下調后,決定以每平方米4050元的均價開盤銷售.求平均每次下調的百分率;某人準備以開盤均價購買一套100平方米的房子,開發商還給予以下兩種優惠方案發供選擇:①打9.8折銷售;②不打折,送兩年物業管理費,物業管理費是每平方米每月1.5元,請問哪種方案更優惠?27.(12分)平面直角坐標系中(如圖),已知拋物線經過點和,與y軸相交于點C,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)點E在拋物線的對稱軸上,且,求點E的坐標;(3)在(2)的條件下,記拋物線的對稱軸為直線MN,點Q在直線MN右側的拋物線上,,求點Q的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:從俯視圖中可以看出最底層小正方體的個數及形狀,從主視圖和左視圖可以看出每一層小正方體的層數和個數,從而算出總的個數.解答:解:從俯視圖可得最底層有3個小正方體,由主視圖可得有2層上面一層是1個小正方體,下面有2個小正方體,從左視圖上看,后面一層是2個小正方體,前面有1個小正方體,所以此幾何體共有四個正方體.故選B.2、B【解析】
延長AD交BC的延長線于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由題意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即電線桿的高度為(2+4)米.點睛:本題考查的是解直角三角形的應用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數的定義是解題的關鍵.3、C【解析】
先求出800米跑不合格的百分率,再根據用樣本估計總體求出估值.【詳解】400×人.故選C.考查了頻率分布直方圖,以及用樣本估計總體,關鍵是從上面可得到具體的值.4、C【解析】
由當x=-2和x=0時,y的值相等,利用二次函數圖象的對稱性即可求出對稱軸.【詳解】解:∵x=-2和x=0時,y的值相等,∴二次函數的對稱軸為,故答案為:C.本題考查了二次函數的性質,利用二次函數圖象的對稱性找出對稱軸是解題的關鍵.5、D【解析】
根據分式方程的解的定義把x=4代入原分式方程得到關于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經檢驗,a=1是原方程的解故選D.點睛:此題考查了分式方程的解,分式方程注意分母不能為2.6、B【解析】分析:∵函數y=x2+bx+c與x軸無交點,∴b2﹣4c<1;故①錯誤。當x=1時,y=1+b+c=1,故②錯誤。∵當x=3時,y=9+3b+c=3,∴3b+c+6=1。故③正確。∵當1<x<3時,二次函數值小于一次函數值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正確。綜上所述,正確的結論有③④兩個,故選B。7、B【解析】試題分析:∵2<<3,∴1<-1<2,即-1在1到2之間,故選B.考點:估算無理數的大小.8、B【解析】
∵(±9)2=81,∴±±9.故選B.9、B【解析】
根據一次函數的性質,根據不等式組即可解決問題;【詳解】∵一次函數y=(2m-3)x-1+m的圖象不經過第三象限,∴,解得1≤m<.故選:B.本題考查一次函數的圖象與系數的關系等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考常考題型.10、C【解析】
根據菱形的性質:①菱形具有平行四邊形的一切性質;②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質11、A【解析】
先整理為一般形式,用含m的式子表示出根的判別式△,再結合已知條件判斷△的取值范圍即可.【詳解】方程整理為,△,∵,∴,∴△,∴方程沒有實數根,故選A.本題考查了一元二次方程根的判別式,當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.12、C【解析】
根據三角形的性質即可作出判斷.【詳解】解:A、正確,符合三角形三邊關系;B、正確;三角形外角和定理;C、錯誤,等邊三角形既是軸對稱圖形,不是中心對稱圖形;D、三角形的一條中線能將三角形分成面積相等的兩部分,正確.故選:C.本題考查了命題真假的判斷,屬于基礎題.根據定義:符合事實真理的判斷是真命題,不符合事實真理的判斷是假命題,不難選出正確項.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】
設正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a.求出正六邊形的邊長,根據S六邊形GHIJKI:S六邊形ABCDEF=()2,計算即可;【詳解】設正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a,作A1M⊥FA交FA的延長線于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,FM=5a,在Rt△A1FM中,FA1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F1L=a,根據對稱性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六邊形GHIJKI:S六邊形ABCDEF=()2=,故答案為:.本題考查正六邊形與圓,解直角三角形,勾股定理,相似三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數解決問題.14、1【解析】試題解析:設正方形對角線交點為D,過點D作DM⊥AO于點M,DN⊥BO于點N;設圓心為Q,切點為H、E,連接QH、QE.∵在正方形AOBC中,反比例函數y=經過正方形AOBC對角線的交點,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四邊形HQEC是正方形,∵半徑為(1-2)的圓內切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【點睛】此題主要考查了正方形的性質以及三角形內切圓的性質以及待定系數法求反比例函數解析式,根據已知求出CD的長度,進而得出DN×NO=1是解決問題的關鍵.15、或【解析】
作PH⊥CD,垂足為H,設運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設P,Q兩點從出發經過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發經過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.考查矩形的性質,勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關鍵.16、18【解析】
運用冪的乘方和積的乘方的運算法則求解即可.【詳解】解:∵am=2,an=3,∴a3m+2n=(am)3×(an)2=23×32=1.故答案為1.本題考查了冪的乘方和積的乘方,掌握運算法則是解答本題的關鍵.17、4【解析】試題分析:根據BD和CD分別平分∠ABC和∠ACB,和EF∥BC,利用兩直線平行,內錯角相等和等量代換,求證出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分別平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等邊△ABC的邊長為6,∵EF∥BC,∴△ADE是等邊三角形,∴EF=AE=2BE,∴EF==,故答案為4考點:等邊三角形的判定與性質;平行線的性質.18、【解析】【分析】連接半徑和弦AE,根據直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結論.【詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【點睛】本題考查了扇形的面積計算、平行四邊形的性質,含30度角的直角三角形的性質等,求出扇形OBE的面積和△ABE的面積是解本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)拋物線解析式為,頂點為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】
(1)已知了拋物線的對稱軸解析式,可用頂點式二次函數通式來設拋物線,然后將A、B兩點坐標代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據E點的橫坐標,用拋物線的解析式求出E點的縱坐標,那么E點縱坐標的絕對值即為△OAE的高,由此可根據三角形的面積公式得出△AOE的面積與x的函數關系式進而可得出S與x的函數關系式.(3)①將S=24代入S,x的函數關系式中求出x的值,即可得出E點的坐標和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應該是等腰直角三角形,即E點的坐標為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點.【詳解】(1)由拋物線的對稱軸是,可設解析式為.把A、B兩點坐標代入上式,得解之,得故拋物線解析式為,頂點為(2)∵點在拋物線上,位于第四象限,且坐標適合,∴y<0,即-y>0,-y表示點E到OA的距離.∵OA是的對角線,∴.因為拋物線與軸的兩個交點是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據題意,當S=24時,即.化簡,得解之,得故所求的點E有兩個,分別為E1(3,-4),E2(4,-4).點E1(3,-4)滿足OE=AE,所以是菱形;點E2(4,-4)不滿足OE=AE,所以不是菱形.②當OA⊥EF,且OA=EF時,是正方形,此時點E的坐標只能是(3,-3).而坐標為(3,-3)的點不在拋物線上,故不存在這樣的點E,使為正方形.20、(1)12;(2)【解析】分析:(1)直接利用概率公式求解;(2)畫樹狀圖展示所有8種等可能的結果數,再找出甲至少勝一局的結果數,然后根據概率公式求.詳解:(1)甲隊最終獲勝的概率是12(2)畫樹狀圖為:共有8種等可能的結果數,其中甲至少勝一局的結果數為7,所以甲隊最終獲勝的概率=78點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.21、詳見解析【解析】
利用尺規過D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.【詳解】解:過D作DE⊥AC,如圖所示,△CDE即為所求:本題主要考查了尺規作圖,相似三角形的判定,解決問題的關鍵是掌握相似三角形的判定方法.22、(1)x≥﹣1;(2)a是不等式的解.【解析】
(1)根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得.
(2)根據不等式的解的定義求解可得【詳解】解:(1)去分母得:2﹣x≤3(2+x),去括號得:2﹣x≤6+3x,移項、合并同類項得:﹣4x≤4,系數化為1得:x≥﹣1.(2)∵a>2,不等式的解集為x≥﹣1,而2>﹣1,∴a是不等式的解.本題考查了解一元一次不等式,掌握解一元一次不等式的步驟是解題的關鍵23、(1)見解析;(2)見解析;(3)見解析,.【解析】
(1)直接利用網格結合勾股定理得出符合題意的答案;(2)直接利用網格結合平行四邊形的性質以及勾股定理得出符合題意的答案;(3)連接CE,根據勾股定理求出CE的長寫出即可.【詳解】解:(1)如圖所示;(2)如圖所示;(3)如圖所示;CE=.本題主要考查了等腰三角形的性質、平行四邊形的性質、勾股定理,正確應用勾股定理是解題的關鍵.24、見解析.【解析】
由“SAS”可證△ABC≌△DEC,可得BC=CE,即可得結論.【詳解】證明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°∴△ABC≌△DEC(SAS)∴BC=CE,∵AC=AE+CE∴AC=AE+BC本題考查了全等三角形的判定和性質,熟練運用全等三角形的性質是本題的關鍵.25、(1)答案見解析;(2)【解析】分析:(1)直接列舉出所有可能的結果即可.(2)畫樹狀圖展示所有16種等可能的結果數,再找出他們兩人恰好選修同一門課程的結果數,然后根據概率公式求解.詳解:(1)學生小紅計劃選修兩門課程,她所有可能的選法有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《裝修設計細節解讀》課件
- 外國業務開發外包協議
- 2025年廣西南寧市中考物理一模試卷(含解析)
- 鐵路旅客運輸服務鐵路旅客服務心理概述課件
- 《財務分析決策實例》課件
- 鐵道機車專業教學湖南鐵道左繼紅88課件
- 條碼技術物流工程38課件
- 鐵路貨物運雜費貨車延期使用費費率標準課件
- 鐵路運輸法規旅客在站臺突發急性心肌梗死第頁課件
- 中國人的航天夢課件
- 少兒美術課件紫藤花
- 公司分布式光伏發電項目工程監理實施細則
- 《疫苗管理法》法律法規解讀課件
- 自動跟隨行李箱系統設計
- 手動電葫蘆操作規程
- 創新方法論知到章節答案智慧樹2023年西安理工大學
- 《上海市奉賢區小區機動車停放管理工作調查報告》4300字
- 刑偵工作調研報告
- 火力發電廠鍋爐智能燃燒控制技術導則
- 國家開放大學《社會心理學》形考任務1-4參考答案
- 國家開放大學《現代漢語專題》章節自測參考答案
評論
0/150
提交評論