




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省樂清市第二中學2024-2025學年高三3月網絡模擬考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內切球所得截面面積為()A. B. C. D.2.已知函數,,其中為自然對數的底數,若存在實數,使成立,則實數的值為()A. B. C. D.3.復數的共軛復數為()A. B. C. D.4.在復平面內,復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.6.已知點是拋物線的對稱軸與準線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為()A. B. C. D.7.若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q8.在中,內角的平分線交邊于點,,,,則的面積是()A. B. C. D.9.已知等差數列的前項和為,且,則()A.45 B.42 C.25 D.3610.已知雙曲線的一個焦點為,點是的一條漸近線上關于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.11.已知是等差數列的前項和,若,設,則數列的前項和取最大值時的值為()A.2020 B.20l9 C.2018 D.201712.命題“”的否定為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.3張獎券分別標有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.14.用數字、、、、、組成無重復數字的位自然數,其中相鄰兩個數字奇偶性不同的有_____個.15.在中,若,則的范圍為________.16.關于函數有下列四個命題:①函數在上是增函數;②函數的圖象關于中心對稱;③不存在斜率小于且與函數的圖象相切的直線;④函數的導函數不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,將曲線(為參數)通過伸縮變換,得到曲線,設直線(為參數)與曲線相交于不同兩點,.(1)若,求線段的中點的坐標;(2)設點,若,求直線的斜率.18.(12分)已知函數.(1)若,且,求證:;(2)若時,恒有,求的最大值.19.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區等等.(1)為了解“五·一”勞動節當日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:現從年齡在內的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內的人數為,求;(2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節當日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數據資料顯示每年勞動節當日客流量(單位:萬人)都大于1.將每年勞動節當日客流量數據分成3個區間整理得表:勞動節當日客流量頻數(年)244以這10年的數據資料記錄的3個區間客流量的頻率作為每年客流量在該區間段發生的概率,且每年勞動節當日客流量相互獨立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關聯關系如下表:勞動節當日客流量型游船最多使用量123若某艘型游船在勞動節當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節當日被投入卻不被使用,則游船中心當日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節當日獲得的總利潤,的數學期望越大游船中心在勞動節當日獲得的總利潤越大,問該游船中心在2020年勞動節當日應投入多少艘型游船才能使其當日獲得的總利潤最大?20.(12分)已知中,角所對邊的長分別為,且(1)求角的大小;(2)求的值.21.(12分)已知函數,(1)證明:在區間單調遞減;(2)證明:對任意的有.22.(10分)已知數列滿足(),數列的前項和,(),且,.(1)求數列的通項公式:(2)求數列的通項公式.(3)設,記是數列的前項和,求正整數,使得對于任意的均有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據球的特點可知截面是一個圓,根據等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設內切球球心為,到平面的距離為,截面圓的半徑為,因為內切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.本題考查正方體的內切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.2.A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數,(﹣1,+∞)上是增函數,故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當等號同時成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.3.D【解析】
直接相乘,得,由共軛復數的性質即可得結果【詳解】∵∴其共軛復數為.故選:D熟悉復數的四則運算以及共軛復數的性質.4.B【解析】
化簡復數為的形式,然后判斷復數的對應點所在象限,即可求得答案.【詳解】對應的點的坐標為在第二象限故選:B.本題主要考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.5.A【解析】
利用雙曲線:的焦點到漸近線的距離為,求出,的關系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.本題考查雙曲線的簡單性質的應用,構建出的關系是解題的關鍵,考查計算能力,屬于中檔題.6.B【解析】
設,利用兩點間的距離公式求出的表達式,結合基本不等式的性質求出的最大值時的點坐標,結合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設,因為是拋物線的對稱軸與準線的交點,點為拋物線的焦點,所以,則,當時,,當時,,當且僅當時取等號,此時,,點在以為焦點的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.7.B【解析】因為從有2件正品和2件次品的產品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。8.B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,進而求出,然后利用三角形的面積公式可計算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.本題考查三角形面積的計算,涉及正弦定理和余弦定理以及三角形面積公式的應用,考查計算能力,屬于中等題.9.D【解析】
由等差數列的性質可知,進而代入等差數列的前項和的公式即可.【詳解】由題,.故選:D本題考查等差數列的性質,考查等差數列的前項和.10.B【解析】
由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B本題考查雙曲線的簡單幾何性質,考查直線與圓的位置關系,考查數形結合思想與計算能力,屬于中檔題.11.B【解析】
根據題意計算,,,計算,,,得到答案.【詳解】是等差數列的前項和,若,故,,,,故,當時,,,,,當時,,故前項和最大.故選:.本題考查了數列和的最值問題,意在考查學生對于數列公式方法的綜合應用.12.C【解析】
套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C本題考查全稱命題的否定,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:本題主要考查古典概型的概率公式的應用,是基礎題.14.【解析】
對首位數的奇偶進行分類討論,利用分步乘法計數原理和分類加法計數原理可得出結果.【詳解】①若首位為奇數,則第一、三、五個數位上的數都是奇數,其余三個數位上的數為偶數,此時,符號條件的位自然數個數為個;②若首位數為偶數,則首位數不能為,可排在第三或第五個數位上,第二、四、六個數位上的數為奇數,此時,符合條件的位自然數個數為個.綜上所述,符合條件的位自然數個數為個.故答案為:.本題考查數的排列問題,要注意首位數字的分類討論,考查分步乘法計數和分類加法計數原理的應用,考查計算能力,屬于中等題.15.【解析】
借助正切的和角公式可求得,即則通過降冪擴角公式和輔助角公式可化簡,由,借助正弦型函數的圖象和性質即可解得所求.【詳解】,所以,.因為,所以,所以.故答案為:.本題考查了三角函數的化簡,重點考查學生的計算能力,難度一般.16.①②③【解析】
由單調性、對稱性概念、導數的幾何意義、導數與極值的關系進行判斷.【詳解】函數的定義域是,由于,在上遞增,∴函數在上是遞增,①正確;,∴函數的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.本題考查函數的單調性、對稱性,考查導數的幾何意義、導數與極值,解題時按照相關概念判斷即可,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)由l參數方程與橢圓方程聯立可得A、B兩點參數和,再利用M點的參數為A、B兩點參數和的一半即可求M的坐標;(2)利用直線參數方程的幾何意義得到,再利用計算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數方程為(為參數),其普通方程為,當時,將(為參數)代入得,設直線l上A、B兩點所對應的參數為,中點M所對應的參數為,則,所以的坐標為;(2)將代入得,則,因為即,所以,故,由得,所以.本題考查了伸縮變換、參數方程與普通方程的互化、直線參數方程的幾何意義等知識,考查學生的計算能力,是一道中檔題.18.(1)見解析;(2).【解析】
(1)利用導數分析函數的單調性,并設,則,,將不等式等價轉化為證明,構造函數,利用導數分析函數在區間上的單調性,通過推導出來證得結論;(2)構造函數,對實數分、、,利用導數分析函數的單調性,求出函數的最小值,再通過構造新函數,利用導數求出函數的最大值,可得出的最大值.【詳解】(1),,所以,函數單調遞增,所以,當時,,此時,函數單調遞減;當時,,此時,函數單調遞增.要證,即證.不妨設,則,,下證,即證,構造函數,,所以,函數在區間上單調遞增,,,即,即,,且函數在區間上單調遞增,所以,即,故結論成立;(2)由恒成立,得恒成立,令,則.①當時,對任意的,,函數在上單調遞增,當時,,不符合題意;②當時,;③當時,令,得,此時,函數單調遞增;令,得,此時,函數單調遞減...令,設,則.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,函數在處取得最大值,即.因此,的最大值為.本題考查利用導數證明不等式,同時也考查了利用導數求代數式的最值,構造新函數是解答的關鍵,考查推理能力,屬于難題.19.(1);(2)投入3艘型游船使其當日獲得的總利潤最大【解析】
(1)首先計算出在,內抽取的人數,然后利用超幾何分布概率計算公式,計算出.(2)分別計算出投入艘游艇時,總利潤的期望值,由此確定當日游艇投放量.【詳解】(1)年齡在內的游客人數為150,年齡在內的游客人數為100;若采用分層抽樣的方法抽取10人,則年齡在內的人數為6人,年齡在內的人數為4人.可得.(2)①當投入1艘型游船時,因客流量總大于1,則(萬元).②當投入2艘型游船時,若,則,此時;若,則,此時;此時的分布列如下表:2.56此時(萬元).③當投入3艘型游船時,若,則,此時;若,則,此時;若,則,此時;此時的分布列如下表:25.59此時(萬元).由于,則該游船中心在2020年勞動節當日應投入3艘型游船使其當日獲得的總利潤最大.本小題主要考查分層抽樣,考查超幾何分布概率計算公式,考查隨機變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數學思想方法,屬于中檔題.20.(1);(2).【解析】
(1)正弦定理的邊角轉換,以及兩角和的正弦公式展開,特殊角的余弦值即可求出答案;(2)構造齊次式,利用正弦定理的邊角轉換,得到,結合余弦定理得到【詳解】解:(1)由已知,得又∵∴∴,因為得∵∴.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東坡成就介紹課件
- 上海市奉賢區2025屆高三下學期二模試題 歷史 含解析
- 專業職業課件
- 合伙合同與終止合同
- 遼寧省沈陽市五校協作體2024-2025學年高考模擬試卷(1)語文試題含解析
- 山東理工大學《數據結構中俄》2023-2024學年第一學期期末試卷
- 山東省青島市第十六中學2025年重慶一中初三4月月考物理試題含解析
- 銷售合同書范文
- 店鋪租賃合同模板
- 云南省德宏市重點中學2025屆初三5月模擬考試自選試題含解析
- 智鼎在線測評28題答案
- 青少年無人機課程:第一課-馬上起飛
- 2024年國家義務教育質量監測-八年級心理健康考核試題
- 3班主任基本功競賽:主題班會《我本是高山》教學課件
- 《通信原理》期末考試復習題庫(含答案)
- 五年級下冊英語教案-Unit 3 Lesson 17 Danny's Email(冀教版)
- 2024建筑企業資質股權轉讓居間協議
- 大學助農直播創業計劃書
- 2024年北京市自來水集團有限責任公司興淼水務分公司招聘筆試沖刺題(帶答案解析)
- CHT 8023-2011 機載激光雷達數據處理技術規范(正式版)
- 2023-2024學年北京四中高一(下)期中物理試卷(含解析)
評論
0/150
提交評論