山西衛生健康職業學院《機器學習1》2023-2024學年第二學期期末試卷_第1頁
山西衛生健康職業學院《機器學習1》2023-2024學年第二學期期末試卷_第2頁
山西衛生健康職業學院《機器學習1》2023-2024學年第二學期期末試卷_第3頁
山西衛生健康職業學院《機器學習1》2023-2024學年第二學期期末試卷_第4頁
山西衛生健康職業學院《機器學習1》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁山西衛生健康職業學院

《機器學習1》2023-2024學年第二學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個圖像分類任務中,如果需要快速進行模型的訓練和預測,以下哪種輕量級模型架構可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG2、機器學習中,批量歸一化(BatchNormalization)通常應用于()A.輸入層B.隱藏層C.輸出層D.以上都可以3、在一個監督學習問題中,我們需要評估模型在新數據上的泛化能力。如果數據集較小且存在類別不平衡的情況,以下哪種評估指標需要特別謹慎地使用?()A.準確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)4、在進行機器學習模型訓練時,過擬合是一個常見的問題。過擬合意味著模型在訓練數據上表現很好,但在新的、未見過的數據上表現不佳。為了防止過擬合,可以采取多種正則化方法。假設我們正在訓練一個神經網絡,以下哪種正則化技術通常能夠有效地減少過擬合?()A.增加網絡的層數和神經元數量B.在損失函數中添加L1正則項C.使用較小的學習率進行訓練D.減少訓練數據的數量5、機器學習中,批量歸一化(BatchNormalization)的主要作用是()A.加快訓練速度B.防止過擬合C.提高模型精度D.以上都是6、假設要開發一個自然語言處理的系統,用于文本情感分析,判斷一段文字是積極、消極還是中性。考慮到文本的多樣性和語義的復雜性。以下哪種技術和方法可能是最有效的?()A.基于詞袋模型的樸素貝葉斯分類器,計算簡單,但忽略了詞序和上下文信息B.循環神經網絡(RNN),能夠處理序列數據,但可能存在梯度消失或爆炸問題C.長短時記憶網絡(LSTM),改進了RNN的長期依賴問題,對長文本處理能力較強,但模型較復雜D.基于Transformer架構的預訓練語言模型,如BERT或GPT,具有強大的語言理解能力,但需要大量的計算資源和數據進行微調7、在一個分類問題中,如果需要對新出現的類別進行快速適應和學習,以下哪種模型具有較好的靈活性?()A.在線學習模型B.增量學習模型C.遷移學習模型D.以上模型都可以8、在機器學習中,特征工程是非常重要的一步。假設我們要預測一個城市的空氣質量,有許多相關的原始數據,如氣象數據、交通流量、工廠排放等。以下關于特征工程的描述,哪一項是不準確的?()A.對原始數據進行標準化或歸一化處理,可以使不同特征在數值上具有可比性B.從原始數據中提取新的特征,例如計算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標變量有顯著影響的特征,去除冗余或無關的特征D.特征工程只需要在模型訓練之前進行一次,后續不需要再進行調整和優化9、在一個圖像分類任務中,模型在訓練集上表現良好,但在測試集上性能顯著下降。這種現象可能是由于什么原因導致的?()A.過擬合B.欠擬合C.數據不平衡D.特征選擇不當10、假設正在進行一個異常檢測任務,數據具有高維度和復雜的分布。以下哪種技術可以用于將高維數據映射到低維空間以便更好地檢測異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術都可以11、想象一個文本分類的任務,需要對大量的新聞文章進行分類,如政治、經濟、體育等。考慮到詞匯的多樣性和語義的復雜性。以下哪種詞向量表示方法可能是最適合的?()A.One-Hot編碼,簡單直觀,但向量維度高且稀疏B.詞袋模型(BagofWords),忽略詞序但計算簡單C.分布式詞向量,如Word2Vec或GloVe,能夠捕捉詞與詞之間的語義關系,但對多義詞處理有限D.基于Transformer的預訓練語言模型生成的詞向量,具有強大的語言理解能力,但計算成本高12、機器學習中的算法選擇需要考慮多個因素。以下關于算法選擇的說法中,錯誤的是:算法選擇需要考慮數據的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關于算法選擇的說法錯誤的是()A.對于小樣本數據集,優先選擇復雜的深度學習算法B.對于高維度數據,優先選擇具有降維功能的算法C.對于實時性要求高的任務,優先選擇計算速度快的算法D.對于不平衡數據集,優先選擇對不平衡數據敏感的算法13、在一個推薦系統中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機推薦,增加推薦結果的不確定性,但可能降低相關性B.基于內容的多樣性優化,選擇不同類型的物品進行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結合使用,并根據用戶反饋動態調整14、在集成學習中,Adaboost算法通過調整樣本的權重來訓練多個弱分類器。如果一個樣本在之前的分類器中被錯誤分類,它的權重會()A.保持不變B.減小C.增大D.隨機變化15、在一個深度學習模型的訓練過程中,出現了梯度消失的問題。以下哪種方法可以嘗試解決這個問題?()A.使用ReLU激活函數B.增加網絡層數C.減小學習率D.以上方法都可能有效16、假設正在進行一個目標檢測任務,例如在圖像中檢測出人物和車輛。以下哪種深度學習框架在目標檢測中被廣泛應用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標檢測17、考慮一個圖像分割任務,即將圖像分割成不同的區域或對象。以下哪種方法常用于圖像分割?()A.閾值分割B.區域生長C.邊緣檢測D.以上都是18、在一個圖像生成的任務中,需要根據給定的描述或條件生成逼真的圖像。考慮到生成圖像的質量、多樣性和創新性。以下哪種生成模型可能是最有潛力的?()A.生成對抗網絡(GAN),通過對抗訓練生成逼真的圖像,但可能存在模式崩潰和訓練不穩定的問題B.變分自編碼器(VAE),能夠學習數據的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴散模型,通過逐步去噪生成圖像,具有較高的質量和多樣性,但計算成本較高19、在機器學習中,模型的可解釋性是一個重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經網絡C.隨機森林D.支持向量機20、假設正在構建一個推薦系統,需要根據用戶的歷史行為和偏好為其推薦相關的產品或內容。如果數據具有稀疏性和冷啟動問題,以下哪種方法可以幫助改善推薦效果?()A.基于內容的推薦B.協同過濾推薦C.混合推薦D.以上方法都可以嘗試21、某機器學習項目需要對大量的圖像進行分類,但是計算資源有限。以下哪種技術可以在不顯著降低性能的前提下減少計算量?()A.模型壓縮B.數據量化C.遷移學習D.以上技術都可以考慮22、假設我們有一個時間序列數據,想要預測未來的值。以下哪種機器學習算法可能不太適合()A.線性回歸B.長短期記憶網絡(LSTM)C.隨機森林D.自回歸移動平均模型(ARMA)23、在一個工業生產的質量控制場景中,需要通過機器學習來實時監測產品的質量參數,及時發現異常。數據具有高維度、動態變化和噪聲等特點。以下哪種監測和分析方法可能是最合適的?()A.基于主成分分析(PCA)的降維方法,找出主要的影響因素,但對異常的敏感度可能較低B.采用孤立森林算法,專門用于檢測異常數據點,但對于高維數據效果可能不穩定C.運用自組織映射(SOM)網絡,能夠對數據進行聚類和可視化,但實時性可能不足D.利用基于深度學習的自動編碼器(Autoencoder),學習正常數據的模式,對異常數據有較好的檢測能力,但訓練和計算成本較高24、假設正在進行一項時間序列預測任務,例如預測股票價格的走勢。在選擇合適的模型時,需要考慮時間序列的特點,如趨勢、季節性和噪聲等。以下哪種模型在處理時間序列數據時具有較強的能力?()A.線性回歸模型,簡單直接,易于解釋B.決策樹模型,能夠處理非線性關系C.循環神經網絡(RNN),能夠捕捉時間序列中的長期依賴關系D.支持向量回歸(SVR),對小樣本數據效果較好25、在一個分類問題中,如果數據分布不均衡,以下哪種方法可以用于處理這種情況?()A.過采樣B.欠采樣C.生成對抗網絡(GAN)生成新樣本D.以上方法都可以二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明機器學習在交通流量預測中的技術。2、(本題5分)解釋如何使用機器學習進行人體姿態估計。3、(本題5分)解釋如何使用機器學習進行腦機接口(BCI)信號處理。4、(本題5分)談談在水利工程中,機器學習的應用。三、應用題(本大題共5個小題,共25分)1、(本題5分)利用神經生物學數據研究神經系統的結構和功能。2、(本題5分)使用強化學習算法訓練智能體在迷宮環境中找到出口。3、(本題5分)利用古生物學數據研究古生物的形態和演化。4、(本題5分)使用樸素貝葉斯算法對用戶的社交媒體發布內容進行分類。5、(本題5分)利用呼吸系統疾病數據診斷和治療肺部疾病

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論