




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省鹽城市大岡初中2025年初三下期中考試(數(shù)學試題文)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.的一個有理化因式是()A. B. C. D.2.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°3.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.4.已知a,b,c在數(shù)軸上的位置如圖所示,化簡|a+c|-|a-2b|-|c+2b|的結果是()A.4b+2c B.0 C.2c D.2a+2c5.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結論:①若C,O兩點關于AB對稱,則OA=;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④6.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關系的圖象大致如圖所示,則該容器可能是()A. B.C. D.7.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.8.如圖,在△ABC中,分別以點A和點C為圓心,大于AC長為半徑畫弧,兩弧相交于點M,N,作直線MN分別交BC,AC于點D,E,若AE=3cm,△ABD的周長為13cm,則△ABC的周長為()A.16cm B.19cm C.22cm D.25cm9.若等式x2+ax+19=(x﹣5)2﹣b成立,則a+b的值為()A.16 B.﹣16 C.4 D.﹣410.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.12.分解因式:x2y﹣y=_____.13.如圖,邊長為4的正方形ABCD內接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認為正確結論的序號都填上)14.圖①是一個三角形,分別連接這個三角形的中點得到圖②;再分別連接圖②中間小三角形三邊的中點,得到圖③.按上面的方法繼續(xù)下去,第n個圖形中有_____個三角形(用含字母n的代數(shù)式表示).15.已知點、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.16.在Rt△ABC內有邊長分別為2,x,3的三個正方形如圖擺放,則中間的正方形的邊長x的值為_____.三、解答題(共8題,共72分)17.(8分)已知關于x的一元二次方程.求證:方程有兩個不相等的實數(shù)根;如果方程的兩實根為,,且,求m的值.18.(8分)某商場服裝部分為了解服裝的銷售情況,統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),并根據(jù)統(tǒng)計的這組銷售額的數(shù)據(jù),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:(1)該商場服裝營業(yè)員的人數(shù)為,圖①中m的值為;(2)求統(tǒng)計的這組銷售額數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).19.(8分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉過程中,當∠OAG′是直角時,求α的度數(shù);②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結果不必說明理由.20.(8分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關知識便可解決這個問題.請結合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變若BC=7,AD=1.請直接寫出線段BE的長為.21.(8分)計算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.22.(10分)解不等式組,并寫出其所有的整數(shù)解.23.(12分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過計算,判斷AD2與AC?CD的大小關系;(2)求∠ABD的度數(shù).24.某校在一次大課間活動中,采用了四種活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據(jù)調查統(tǒng)計結果,繪制了不完整的統(tǒng)計圖.請結合統(tǒng)計圖,回答下列問題:(1)本次調查學生共人,a=,并將條形圖補充完整;(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?(3)學校讓每班在A、B、C、D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
找出原式的一個有理化因式即可.【詳解】的一個有理化因式是,故選B.此題考查了分母有理化,熟練掌握有理化因式的取法是解本題的關鍵.2、C【解析】
先根據(jù)平行線的性質得出∠CBE=∠E=60°,再根據(jù)三角形的外角性質求出∠C的度數(shù)即可.【詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.本題考查了平行線的性質、三角形外角的性質,熟練掌握三角形外角的性質是解題的關鍵.3、B【解析】
連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.考查弧長公式,等邊三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,屬于中考常考題型.4、A【解析】由數(shù)軸上點的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a?2b>0,c+2b<0,則原式=a+c?a+2b+c+2b=4b+2c.故選:B.點睛:本題考查了整式的加減以及數(shù)軸,涉及的知識有:去括號法則以及合并同類項法則,熟練掌握運算法則是解本題的關鍵.5、D【解析】分析:①先根據(jù)直角三角形30°的性質和勾股定理分別求AC和AB,由對稱的性質可知:AB是OC的垂直平分線,所以
②當OC經過AB的中點E時,OC最大,則C、O兩點距離的最大值為4;
③如圖2,當∠ABO=30°時,易證四邊形OACB是矩形,此時AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點共圓可知:A、C、B、O四點共圓,則AB為直徑,由垂徑定理相關推論:平分弦(不是直徑)的直徑垂直于這條弦,但當這條弦也是直徑時,即OC是直徑時,AB與OC互相平分,但AB與OC不一定垂直;
④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進行計算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點關于AB對稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點為E,連接OE、CE,∵∴當OC經過點E時,OC最大,則C.O兩點距離的最大值為4;所以②正確;③如圖2,當時,∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點D運動路徑是:以O為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點睛:屬于三角形的綜合體,考查了直角三角形的性質,直角三角形斜邊上中線的性質,軸對稱的性質,弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.6、D【解析】
根據(jù)函數(shù)的圖象和所給出的圖形分別對每一項進行判斷即可.【詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項正確.故選:D.本題主要考查函數(shù)模型及其應用.7、D【解析】
畫出樹狀圖得出所有等可能的情況數(shù),找出恰好是兩個紅球的情況數(shù),即可求出所求的概率.【詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.8、B【解析】
根據(jù)作法可知MN是AC的垂直平分線,利用垂直平分線的性質進行求解即可得答案.【詳解】解:根據(jù)作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長=AB+BD+BC+AC=13+6=19cm,故選B.本題考查作圖-基本作圖,線段的垂直平分線的性質等知識,解題的關鍵是熟練掌握線段的垂直平分線的性質.9、D【解析】分析:已知等式利用完全平方公式整理后,利用多項式相等的條件求出a與b的值,即可求出a+b的值.詳解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,則a+b=-10+6=-4,故選D.點睛:此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關鍵.10、B【解析】
根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,設a=x,則c=3x,b==2x.即tanA==.故選B.本題考查勾股定理和三角函數(shù),熟悉掌握是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質可得,即可得AC2=CD?BC=4×8=32,解得AC=4.12、y(x+1)(x﹣1)【解析】
觀察原式x2y﹣y,找到公因式y(tǒng)后,提出公因式后發(fā)現(xiàn)x2-1符合平方差公式,利用平方差公式繼續(xù)分解可得.【詳解】解:x2y﹣y=y(tǒng)(x2﹣1)=y(tǒng)(x+1)(x﹣1).故答案為:y(x+1)(x﹣1).本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.13、①②④【解析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④考查了圓的綜合題,關鍵是熟練掌握全等三角形的判定和性質,等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.14、4n﹣1【解析】
分別數(shù)出圖、圖、圖中的三角形的個數(shù),可以發(fā)現(xiàn):第幾個圖形中三角形的個數(shù)就是4與幾的乘積減去如圖中三角形的個數(shù)為按照這個規(guī)律即可求出第n各圖形中有多少三角形.【詳解】分別數(shù)出圖、圖、圖中的三角形的個數(shù),圖中三角形的個數(shù)為;圖中三角形的個數(shù)為;圖中三角形的個數(shù)為;可以發(fā)現(xiàn),第幾個圖形中三角形的個數(shù)就是4與幾的乘積減去1.按照這個規(guī)律,如果設圖形的個數(shù)為n,那么其中三角形的個數(shù)為.故答案為.此題主要考查學生對圖形變化類這個知識點的理解和掌握,解答此類題目的關鍵是根據(jù)題目中給出的圖形,數(shù)據(jù)等條件,通過認真思考,歸納總結出規(guī)律,此類題目難度一般偏大,屬于難題.15、-1【解析】
利用反比例函數(shù)的性質,即可得到反比例函數(shù)圖象在第一、三象限,進而得出,據(jù)此可得k的取值.【詳解】解:點、都在反比例函數(shù)的圖象上,,
在每個象限內,y隨著x的增大而增大,
反比例函數(shù)圖象在第一、三象限,
,
的值可以取等,答案不唯一
故答案為:.本題考查反比例函數(shù)圖象上的點的坐標特征,解答本題的關鍵是明確題意,利用反比例函數(shù)的性質解答.16、1【解析】解:如圖.∵在Rt△ABC中(∠C=90°),放置邊長分別2,3,x的三個正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合題意,舍去),x=1.故答案為1.點睛:本題主要考查相似三角形的判定和性質、正方形的性質,解題的關鍵在于找到相似三角形,用x的表達式表示出對應邊是解題的關鍵.三、解答題(共8題,共72分)17、(1)證明見解析(1)1或1【解析】試題分析:(1)要證明方程有兩個不相等的實數(shù)根,只要證明原來的一元二次方程的△的值大于0即可;(1)根據(jù)根與系數(shù)的關系可以得到關于m的方程,從而可以求得m的值.試題解析:(1)證明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有兩個不相等的實數(shù)根;(1)∵,方程的兩實根為,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.18、(1)25;28;(2)平均數(shù):1.2;眾數(shù):3;中位數(shù):1.【解析】
(1)觀察統(tǒng)計圖可得,該商場服裝部營業(yè)員人數(shù)為2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)計算出所有營業(yè)員的銷售總額除以營業(yè)員的總人數(shù)即可的平均數(shù);觀察統(tǒng)計圖,根據(jù)眾數(shù)、中位數(shù)的定義即可得答案.【詳解】解:(1)根據(jù)條形圖2+5+7+8+3=25(人),
m=100-20-32-12-8=28;故答案為:25;28;(2)觀察條形統(tǒng)計圖,∵∴這組數(shù)據(jù)的平均數(shù)是1.2.∵在這組數(shù)據(jù)中,3出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是3.∵將這組數(shù)據(jù)按照由小到大的順序排列,其中處于中間位置的數(shù)是1,∴這組數(shù)據(jù)的中位數(shù)是1.此題主要考查了平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義以及利用樣本估計總體等知識.找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).19、(1)見解析;(1)30°或150°,的長最大值為,此時.【解析】
(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(1)①在旋轉過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當∠OAG′=90°時,α=150°;②當旋轉到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′=+1,此時α=315°.【詳解】(1)如圖1,延長ED交AG于點H,∵點O是正方形ABCD兩對角線的交點,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(1)①在旋轉過程中,∠OAG′成為直角有兩種情況:(Ⅰ)α由0°增大到90°過程中,當∠OAG′=90°時,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°°,即α=30°;(Ⅱ)α由90°增大到180°過程中,當∠OAG′=90°時,同理可求∠BOG′=30°,∴α=180°?30°=150°.綜上所述,當∠OAG′=90°時,α=30°或150°.②如圖3,當旋轉到A.
O、F′在一條直線上時,AF′的長最大,∵正方形ABCD的邊長為1,∴OA=OD=OC=OB=,∵OG=1OD,∴OG′=OG=,∴OF′=1,∴AF′=AO+OF′=+1,∵∠COE′=45°,∴此時α=315°.本題考查的是正方形的性質、旋轉變換的性質以及銳角三角函數(shù)的定義,掌握正方形的四條邊相等、四個角相等,旋轉變換的性質是解題的關鍵,注意特殊角的三角函數(shù)值的應用.20、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質即可得出結論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內蒙古能源職業(yè)學院《鋼琴作品鑒賞》2023-2024學年第一學期期末試卷
- 樂山市五通橋區(qū)2025屆四年級數(shù)學第二學期期末考試試題含解析
- 山東信息職業(yè)技術學院《C語言程序設計(實驗)》2023-2024學年第二學期期末試卷
- 漳州市龍海市2025屆五下數(shù)學期末預測試題含答案
- 吉林省榆樹一中五校2024-2025學年高考數(shù)學試題命題比賽模擬試卷(19)含解析
- 遼寧省大連市達標名校2025屆中考原創(chuàng)押題卷(2)語文試題試卷含解析
- 四川省德陽中江縣初中2025屆初三第二次(4月)適應性測試物理試題試卷含解析
- 三方人力資源合作協(xié)議書范本
- 四川省成都市崇慶中學2024-2025學年初三第二學期聯(lián)考物理試題含解析
- 智能家居系統(tǒng)穩(wěn)定性提升-第1篇-全面剖析
- 國家開放大學《農村政策法規(guī)》形成性考核(平時作業(yè))參考答案
- 鋼結構焊接施工方案最終版
- 圍絕經期婦女保健指導
- 談判藥品審核備案表
- 果蔬采摘機器人
- 畢業(yè)論文-電子密碼鎖設計
- 中國古代園林
- 國開開放大學本科非英語專業(yè)學士學位英語統(tǒng)一考試樣題附答案
- 混凝土面板施工技術方案
- 雙心藥物治療
- 《現(xiàn)代教育技術》公共課實驗報告
評論
0/150
提交評論