2022-2023年京改版初中數(shù)學八年級上冊期末考試檢測試題(共4套)_第1頁
2022-2023年京改版初中數(shù)學八年級上冊期末考試檢測試題(共4套)_第2頁
2022-2023年京改版初中數(shù)學八年級上冊期末考試檢測試題(共4套)_第3頁
2022-2023年京改版初中數(shù)學八年級上冊期末考試檢測試題(共4套)_第4頁
2022-2023年京改版初中數(shù)學八年級上冊期末考試檢測試題(共4套)_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年京改版數(shù)學八年級上冊期末考試檢測試題(一)一、單選題1、把根號外的因式適當變形后移到根號內,得()A. B. C. D.2、()A. B.4 C. D.3、“三等分角”大約是在公元前五世紀由古希臘人提出來的.借助如圖所示的“三等分角儀”能三等分任一角.這個三等分角儀由兩根有槽的棒,組成,兩根棒在點相連并可繞轉動,點固定,,點,可在槽中滑動,若,則的度數(shù)是(

)A.60° B.65° C.75° D.80°4、如圖,OB平分∠AOC,D、E、F分別是射線OA、射線OB、射線OC上的點,D、E、F與O點都不重合,連接ED、EF若添加下列條件中的某一個.就能使DOEFOE,你認為要添加的那個條件是(

)A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE5、如圖,四邊形中,,,,,且,則四邊形的面積為(

)A. B. C. D.6、下列命題的逆命題一定成立的是(

)①對頂角相等;②同位角相等,兩直線平行;③全等三角形的周長相等;④能夠完全重合的兩個三角形全等.A.①②③ B.①④ C.②④ D.②7、若中,,則一定是(

)A.銳角三角形 B.鈍角三角形 C.直角三角形 D.任意三角形8、計算的結果是()A. B. C. D.9、下列式子:,,,,,其中分式有(

)A.1個 B.2個 C.3個 D.4個10、化簡的結果是()A.a(chǎn) B.a(chǎn)+1 C.a(chǎn)﹣1 D.a(chǎn)2﹣1二、填空題1、一列數(shù)a1,a2,a3,…,an.其中a1=-1,a2=,a3=,…,an=,則a1+a2+a3+…+a2017=________.2、當______時,分式的值為0.3、在三角形的三條高中,位于三角形外的可能條數(shù)是______條.4、在平面直角坐標系中,點與點關于軸對稱,則的值是_____.5、如圖a是長方形紙帶,∠DEF=16°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數(shù)是__.6、在繼承和發(fā)揚紅色學校光榮傳統(tǒng),與時俱進,把育英學校建成一所文明的、受社會尊敬的學校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.7、如圖所示的運算序中,若開始輸入的a值為21,我們發(fā)現(xiàn)第一次輸出的結果為24.第二次輸出的結果為12,…,則第2019次輸出的結果為_________.8、方程的解為__________.9、計算:______.10、已知,,則______,______.三、解答題1、當運動中的汽車撞擊到物體時,汽車所受到的損壞程度可以用“撞擊影響”來衡量.某種型號的汽車的撞擊影響可以用公式I=2v2來表示,其中v(千米/分)表示汽車的速度.假設某種型號的車在一次撞擊試驗中測得撞擊影響為51.請你求一下該車撞擊時的車速是多少.(精確到0.1千米/分)2、如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.(1)求證:AE=2CE;(2)連接CD,請判斷△BCD的形狀,并說明理由.3、如圖,BC⊥AD,垂足為點C,∠A27°,∠BED44°.求:(1)∠B的度數(shù);(2)∠BFD的度數(shù).4、把下列各式填入相應的括號內:

-2a,,,,,,整式集合:{

…};分式集合:{

…}5、如圖,D是△ABC的邊AC上一點,點E在AC的延長線上,ED=AC,過點E作EF∥AB,并截取EF=AB,連接DF.求證:DF=CB.2023年京改版數(shù)學八年級上冊期末考試檢測試題及答案(二)一、選擇題(本大題共8小題,共24分。在每小題列出的選項中,選出符合題目的一項)1.下列等式中,從左到右的變形是因式分解的是(

)A.x(x?2)=x2?2x B.(x+1)2=2.下列各式正確的是(

)A.(?3)2=?3 B.±4=2 3.有下列說法:?①無限小數(shù)都是無理數(shù);?②有限小數(shù)都是有理數(shù);?③?3.6=?0.6;?④4的算術平方根是2;?⑤36=±6;?⑥實數(shù)與數(shù)軸上的點一一對應.A.2個 B.3個 C.4個 D.5個4.下列式子的變形正確的是(

)A.ba=b2a2 B.a5.如圖?①,已知三角形紙片ABC,AB=AC,∠C=65°.將其折疊,如圖?②,使點A與點B重合,折痕為ED,點E,D分別在AB,AC上,那么∠DBC的度數(shù)為(

)A.10° B.15° C.20°6.如圖,在2×2的正方形網(wǎng)格中,每個小正方形的邊長均為1,點A,B,C均為格點,以點A為圓心、AB長為半徑畫弧,交格線于點D,則CD的長為(

)

A.12 B.13 C.3 7.如圖,AB=AC,點D,E分別在AB,AC上,補充下列一個條件后,不能判斷△ABE≌△ACD的是(

)A.∠B=∠C B.AD=AE

C.∠BDC=∠CEB D.BE=CD8.下列各分式的值可能為零的是(

)A.m2+1m2?1 B.1m+1二、填空題(本大題共8小題,共24分)9.點A(1,?3)關于x軸的對稱點A'的坐標是______.10.對于任意兩個實數(shù)a,b,定義運算“☆”為a☆b=a+b,如3☆2=3+2=5.根據(jù)定義可得11.如圖,OA=OB,點C、D分別在OA、OB上,BC與AD交于點E,要使△AOD≌△BOC,則需要添加的一個條件是

(寫出一個即可).12.如圖,在Rt△ABC中,∠C=90°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在△ABC的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多為

個.13.如圖,在△ABC中,∠C=90°,以點A為圓心、適當長為半徑畫弧,分別交AC,AB于點M,N,再分別以點M,N為圓心、大于12MN的長為半徑畫弧,兩弧交于點P,作射線AP交BC于點D.若CD=1,AB=4,則△ABD的面積是14.如圖,在△ABC中,AB=AC,點D,E,F(xiàn)分別是BC,AC,AB上的點,且BF=CD,BD=CE,∠FDE=α,則∠A的度數(shù)是

(用含α的代數(shù)式表示).15.如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于E,DF⊥AC于F,△ABC的面積是45

cm2,AB=16?cm,AC=14?cm,則DE=

cm.16.如圖,等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,點D為BC邊的中點,AD=25,P為AB上一個動點,則PC+PD的最小值為

.三、計算題(本大題共2小題,共12分)17.計算:(1)3

18.計算:(1)1(2)1(3)b(4)1

四、解答題(本大題共8小題,共60分。解答應寫出文字說明,證明過程或演算步驟)19.(本小題6分)

如圖,△ABC中,點D是AB邊上一點,連接CD,AD=CD.

(1)利用尺規(guī)作圖,作出△BDC的角平分線DF(不寫作法,保留作圖痕跡);(2)判斷DF與AC的位置關系,并說明理由.

20.(本小題6分)已知a=b+23,求代數(shù)式(

21.(本小題8分)如圖,在△ABC中,∠BAC=90°,AB=AC,點D在BC上,且BD=BA,點E在BC的延長線上,且CE=CA.求

22.(本小題8分)

如圖,在△ABC中,BD平分∠ABC.

(1)作圖:作BC邊的垂直平分線,分別交BC,BD于點E,F(xiàn)(用尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)在(1)的條件下,連接CF,若∠A=60°,∠ABD=25

23.(本小題8分)已知a,b,c滿足|a?3|+b(1)求a,b,c的值;(2)若a,b,c為△ABC的三邊長,求△ABC的面積.

24.(本小題8分)為緩解市區(qū)至通州沿線的通勤壓力,北京市政府利用現(xiàn)有國鐵線路富余能力,通過線路及站臺改造,開通了“京通號”城際動車組,每班動車組預定運送乘客1200人,為提高運輸效率,“京通號”車組對動車車廂進行了改裝,使得每節(jié)車廂乘坐的人數(shù)比改裝前多了23,運送預定數(shù)量的乘客所需要的車廂數(shù)比改裝前減少了4

25.(本小題8分)

已知線段AB及過點A的直線l.如果線段AC與線段AB關于直線l對稱,連接BC交直線l于點D,以AC為邊作等邊三角形ACE,使得點E在AC的下方,作射線BE交直線l于點F,連接CF.

(1)根據(jù)題意將圖?①補全.(2)如圖?①,如果∠BAD=α(?①∠BAE=

,∠ABE=

(用含α的代數(shù)式表示);?②用等式表示線段FA,F(xiàn)E與FC的數(shù)量關系,并證明.(3)如圖?②,如果60°<α<90°,直接寫出線段FA,

26.(本小題8分)

已知△ABC是等邊三角形,點D在射線BC上(與點B,C不重合),點D關于直線AC的對稱點為點E,連接AD,AE,CE,DE.

(1)如圖?①,當點D為線段BC的中點時,求證:△ADE是等邊三角形.(2)當點D在線段BC的延長線上時,連接BE,點F為線段BE的中點,連接AD,AE,DE,CE,CF.根據(jù)題意在圖?②中補全圖形,用等式表示線段AD與CF的數(shù)量關系,并證明.2023年京改版數(shù)學八年級上冊期末考試檢測試題及答案(三)一、選擇題(本大題共10小題,共30分。在每小題列出的選項中,選出符合題目的一項)KN95型口罩可以保護在顆粒物濃度很高的空間中工作的人不被顆粒物侵害,也可以幫助人們預防傳染病.“KN95”表示此類型的口罩能過濾空氣中95%的粒徑約為0.0000003m的非油性顆粒.其中,0.0000003用科學記數(shù)法表示為(

)A.3×10?6 B.3×10?7 C.化簡分式xy+xx2的結果是(

)A.yx B.y+1x C.y+1 有下列說法:?①無限小數(shù)都是無理數(shù);?②有限小數(shù)都是有理數(shù);?③?3.6=?0.6;?④4的算術平方根是2;?⑤36=±6;?⑥A.2個 B.3個 C.4個 D.5個下列各式是最簡二次根式的是(

)A.13 B.12 C.a2 D.在△ABC中,AB≠AC,線段AD,AE,AF分別是△ABC的高、中線、角平分線,則點D,E,F(xiàn)的位置關系為(

)A.點D總在點E,F(xiàn)之間 B.點E總在點D,F(xiàn)之間

C.點F總在點D,E之間 D.三者的位置關系不確定如果a?b=2,那么代數(shù)式(a2+bA.2 B.?2 C.12 D.如果m2+m=5,那么代數(shù)式mm?2+A.14 B.9 C.?1 D.?6如圖1,四邊形ABCD是軸對稱圖形,對角線AC,BD所在直線都是其對稱軸,且AC,BD相交于點E.動點P從四邊形ABCD的某個頂點出發(fā),沿圖1中的線段勻速運動.設點P運動的時間為x,線段EP的長為y,圖2是y與x的函數(shù)關系的大致圖象,則點P的運動路徑可能是(

)

A.C→B→A→E B.C→D→E→A

C.A→E→C→B D.A→E→D→C如圖,AB=AC,點D,E分別在AB,AC上,補充下列一個條件后,不能判斷△ABE≌△ACD的是(

)A.∠B=∠C B.AD=AE

C.∠BDC=∠CEB D.BE=CD下列命題屬于真命題的是(

)A.數(shù)軸上的兩個實數(shù)比較大小,右邊的數(shù)總比左邊的數(shù)大

B.如果直角三角形的兩條邊分別是3?cm,4?cm,則第三條邊一定是5?cm

C.任意三角形的外角一定大于它的內角

D.有兩邊和一角分別相等的兩個三角形全等二、填空題(本大題共8小題,共24分)如圖1,先將邊長為a的大正方形紙片ABCD剪去一個邊長為b的小正方形EBGF,然后沿直線EF將紙片剪開,再將所得的兩個長方形按如圖2所示的方式拼接(無縫隙,無重疊),得到一個大的長方形AEGC.根據(jù)圖1和圖2的面積關系寫出一個等式:

.(用含a,b的式子表示)

對于任意兩個實數(shù)a,b,定義運算“☆”為a☆b=a+b,如3☆2=3+2=5學校“空中課堂”組織收看了“疫情防控”欄目,小芳在四張相同的卡片上分別寫了“武”“漢”“加”“油”4個字.現(xiàn)在將卡片背面向上洗勻,從中任意摸出一張寫有“漢”的可能性大小是

.在平面直角坐標系xOy中,點A的坐標為(0,3),點B與點A關于x軸對稱,點C在x軸上,若△ABC為等腰直角三角形,則點C的坐標為______.如圖,△ABC≌△ADE,點D在邊BC上,∠EAC=36°,則∠B=

°.

如圖,在△ABC中,∠ABC=90°,∠ACB=60°,BD⊥AC,垂足為D.若AB=6,則BD的長為

請從m2?1,mn?n,n+mn中任選兩個構造一個分式,并化簡該分式.你構造的分式是

,該分式化簡的結果是

.如圖,在△ABC中,AB=AC,點D,E,F(xiàn)分別是BC,AC,AB上的點,且BF=CD,BD=CE,∠FDE=α,則∠A的度數(shù)是

(用含α的代數(shù)式表示).三、計算題(本大題共2小題,共12分)計算:(π?3.14)

(1)計算:18(2)解方程:12

四、解答題(本大題共6小題,共54分。解答應寫出文字說明,證明過程或演算步驟)(本小題8分)

如圖,AB//CD,點E在CB的延長線上,∠A=∠E,AC=ED.

(1)求證:BC=CD;

(2)連接BD,求證:∠ABD=∠EBD.

(本小題8分)

列方程解應用題

開展“光盤行動”,拒絕“舌尖上的浪費”,已成為一種時尚.某學校食堂為了激勵同學們做到光盤不浪費,提出如果學生每餐做到光盤不浪費,那么餐后獎勵香蕉或橘子一份.近日,學校食堂花了2800元和2500元分別采購了香蕉和橘子,采購的香蕉比橘子多150千克,香蕉每千克的價格比橘子每千克的價格低30%,求橘子每千克的價格.

(本小題8分)

如圖,在△ABC中,∠BAC=90°,AB=AC,D是AC邊上一點,連接BD,EC⊥AC,且AE=BD,AE與BC交于點F.

(1)求證:CE=AD;

(2)當AD=CF時,求證:BD平分∠ABC.

(本小題8分)

如圖,DE=CA,AB//DE,∠DAB=75°,∠E=40°(1)求∠DAE的度數(shù);(2)若∠B=35°,求證:

(本小題8分)

已知△ABC是等邊三角形,點D在射線BC上(與點B,C不重合),點D關于直線AC的對稱點為點E,連接AD,AE,CE,DE.

(1)如圖1,當點D為線段BC的中點時,求證:△ADE是等邊三角形;

(2)當點D在線段BC的延長線上時,連接BE,F(xiàn)為線段BE的中點,連接CF.根據(jù)題意在圖2中補全圖形,用等式表示線段AD與CF的數(shù)量關系,并證明.

(本小題8分)

已知線段AB及過點A的直線l.如果線段AC與線段AB關于直線l對稱,連接BC交直線l于點D,以AC為邊作等邊三角形ACE,使得點E在AC的下方,作射線BE交直線l于點F,連接CF.

(1)根據(jù)題意將圖?①補全.(2)如圖?①,如果∠BAD=α(?①∠BAE=

,∠ABE=

(用含α的代數(shù)式表示);?②用等式表示線段FA,F(xiàn)E與FC的數(shù)量關系,并證明.如圖?②,如果60°<α<90°,直接寫出線段FA,2023年京改版數(shù)學八年級上冊期末考試檢測試題及答案(四)一、單選題1、三個等邊三角形的擺放位置如圖所示,若,則的度數(shù)為(

)A. B. C. D.2、在實數(shù)中,最小的是(

)A. B. C.0 D.3、如圖,在數(shù)軸上表示實數(shù)的點可能(

).A.點P B.點Q C.點M D.點N4、如圖,在小正三角形組成的網(wǎng)格中,已有個小正三角形涂黑,還需涂黑個小正三角形,使它們與原來涂黑的小正三角形組成的新圖案恰有三條對稱軸,則的最小值為()A. B. C. D.5、下圖所示的五角星是用螺栓將兩端打有孔的5根木條連接構成的圖形,它的形狀不穩(wěn)定,如果在木條交叉點打孔加裝螺栓的辦法使其形狀穩(wěn)定,那么至少需要添加(

)個螺栓A.1 B.2C.3 D.46、在下列各數(shù)中是無理數(shù)的有(

),,,,,(相鄰兩個之間有個),,.A.個 B.個 C.個 D.個7、如圖,與相交于點O,,不添加輔助線,判定的依據(jù)是(

)A. B. C. D.8、若,,,,則的值為(

)A. B. C. D.9、估計的值應在()A.4和5之間 B.5和6之間 C.6和7之間 D.7和8之間10、如圖,在的正方形網(wǎng)格中有兩個格點A、B,連接,在網(wǎng)格中再找一個格點C,使得是等腰直角三角形,滿足條件的格點C的個數(shù)是(

)A.2 B.3 C.4 D.5二、填空題1、等腰三角形的的兩邊分別為6和3,則它的第三邊為______.2、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論