云南省曲靖市陸良縣達標名校2025屆初三4月聯考數學試題解析含解析_第1頁
云南省曲靖市陸良縣達標名校2025屆初三4月聯考數學試題解析含解析_第2頁
云南省曲靖市陸良縣達標名校2025屆初三4月聯考數學試題解析含解析_第3頁
云南省曲靖市陸良縣達標名校2025屆初三4月聯考數學試題解析含解析_第4頁
云南省曲靖市陸良縣達標名校2025屆初三4月聯考數學試題解析含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省曲靖市陸良縣達標名校2025屆初三4月聯考數學試題解析注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點,若x1<1,x2>2,則a的取值范圍是()A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<02.下列計算正確的是()A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2?a4=a63.我國古代數學著作《增刪算法統宗》記載”繩索量竿”問題:“一條竿子一條索,索比竿子長一托.折回索子卻量竿,卻比竿子短一托“其大意為:現有一根竿和一條繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.設繩索長x尺,竿長y尺,則符合題意的方程組是()A. B. C. D.4.如圖,四邊形ABCD內接于⊙O,點I是△ABC的內心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數為()A.56° B.62° C.68° D.78°5.如圖,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于點E,點D為AB的中點,連接DE,則△BDE的周長是()A.3 B.4 C.5 D.66.如圖,在同一平面直角坐標系中,一次函數y1=kx+b(k、b是常數,且k≠0)與反比例函數y2=(c是常數,且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,則不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<27.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.8.如圖是某個幾何體的三視圖,該幾何體是()A.圓錐 B.四棱錐 C.圓柱 D.四棱柱9.如圖數軸的A、B、C三點所表示的數分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊10.關于x的不等式的解集為x>3,那么a的取值范圍為()A.a>3 B.a<3 C.a≥3 D.a≤3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y=在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為_______.12.已知一組數據,,,,的平均數是,那么這組數據的方差等于________.13.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正確的是_____.14.如圖,在△ACB中,∠ACB=90°,點D為AB的中點,將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.若AC=6,BC=8,則DB1的長為________.15.計算a10÷a5=_______.16.分解因式:ab2﹣9a=_____.17.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統計圖,根據該統計圖可算得該花店銷售花卉的平均單價為_____元.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平行四邊形ABCD中,AD>AB.(1)作出∠ABC的平分線(尺規作圖,保留作圖痕跡,不寫作法);(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.19.(5分)校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.20.(8分)某景區商店銷售一種紀念品,每件的進貨價為40元.經市場調研,當該紀念品每件的銷售價為50元時,每天可銷售200件;當每件的銷售價每增加1元,每天的銷售數量將減少10件.當每件的銷售價為52元時,該紀念品每天的銷售數量為件;當每件的銷售價x為多少時,銷售該紀念品每天獲得的利潤y最大?并求出最大利潤.21.(10分)一定數量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學家把1,3,6,10,15,21,…,稱為“三角形數”;把1,4,9,16,25,…,稱為“正方形數”.將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:三角形數136101521a…正方形數1491625b49…五邊形數151222C5170…(1)按照規律,表格中a=___,b=___,c=___.(2)觀察表中規律,第n個“正方形數”是________;若第n個“三角形數”是x,則用含x、n的代數式表示第n個“五邊形數”是___________.22.(10分)拋物線y=x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,﹣3).求拋物線的解析式;如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數m的變化范圍,并說明理由.如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當k發生改變時,請說明直線QH過定點,并求定點坐標.23.(12分)如圖,△ABC中,D是AB上一點,DE⊥AC于點E,F是AD的中點,FG⊥BC于點G,與DE交于點H,若FG=AF,AG平分∠CAB,連接GE,GD.求證:△ECG≌△GHD;24.(14分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數關系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】由已知拋物線求出對稱軸,解:拋物線:,對稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.2、D【解析】

根據合并同類項法則、積的乘方及同底數冪的乘法的運算法則依次計算后即可解答.【詳解】∵3a﹣2a=a,∴選項A不正確;∵a2+a5≠a7,∴選項B不正確;∵(ab)3=a3b3,∴選項C不正確;∵a2?a4=a6,∴選項D正確.故選D.本題考查了合并同類項法則、積的乘方及同底數冪的乘法的運算法則,熟練運用法則是解決問題的關鍵.3、A【解析】

設索長為x尺,竿子長為y尺,根據“索比竿子長一托,折回索子卻量竿,卻比竿子短一托”,即可得出關于x、y的二元一次方程組.【詳解】設索長為x尺,竿子長為y尺,根據題意得:.故選A.本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.4、C【解析】分析:由點I是△ABC的內心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內接四邊形的外角等于內對角可得答案.詳解:∵點I是△ABC的內心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內接于⊙O,∴∠CDE=∠B=68°,故選C.點睛:本題主要考查三角形的內切圓與內心,解題的關鍵是掌握三角形的內心的性質及圓內接四邊形的性質.5、C【解析】

根據等腰三角形的性質可得BE=BC=2,再根據三角形中位線定理可求得BD、DE長,根據三角形周長公式即可求得答案.【詳解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中點,∴BD=AB=,∴DE是△ABC的中位線,∴DE=AC=,∴△BDE的周長為BD+DE+BE=++2=5,故選C.本題考查了等腰三角形的性質、三角形中位線定理,熟練掌握三角形中位線定理是解題的關鍵.6、C【解析】【分析】一次函數y1=kx+b落在與反比例函數y2=圖象上方的部分對應的自變量的取值范圍即為所求.【詳解】∵一次函數y1=kx+b(k、b是常數,且k≠0)與反比例函數y2=(c是常數,且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,∴不等式y1>y2的解集是﹣3<x<0或x>2,故選C.【點睛】本題考查了反比例函數與一次函數的交點問題,利用數形結合是解題的關鍵.7、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.8、B【解析】

由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀【詳解】解:根據主視圖和左視圖為矩形判斷出是柱體,根據俯視圖是長方形可判斷出這個幾何體應該是四棱柱.故選B.本題考查了由三視圖找到幾何體圖形,屬于簡單題,熟悉三視圖概念是解題關鍵.9、C【解析】分析:由A、B、C三點表示的數之間的關系結合三點在數軸上的位置即可得出b=a+3,c=b+5,再根據原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結合a、b、c間的關系即可求出a、b、c的值,由此即可得出結論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數值以及絕對值,解題的關鍵是確定a、b、c的值.本題屬于基礎題,難度不大,解決該題型題目時,根據數軸上點的位置關系分別找出各點代表的數是關鍵.10、D【解析】分析:先解第一個不等式得到x>3,由于不等式組的解集為x>3,則利用同大取大可得到a的范圍.詳解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式組的解集為x>3,∴a≤3,故選D.點睛:本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集.解集的規律:同大取大;同小取小;大小小大中間找;大大小小找不到.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖像可得出B的坐標,根據三角形的面積公式結合反比例函數系數k的幾何意義即可求解.【詳解】設△OAC和△BAD的直角邊長分別為a、b,則B點坐標為(a+b,a-b)∵點B在反比例函數y=在第一象限的圖象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=a2-b2=此題主要考查等腰直角三角形的面積求法和反比例函數k值的定義,解題的關鍵是熟知等腰直角三角形的性質及反比例函數k值的性質.12、5.2【解析】分析:首先根據平均數求出x的值,然后根據方差的計算法則進行計算即可得出答案.詳解:∵平均數為6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差為:.點睛:本題主要考查的是平均數和方差的計算法則,屬于基礎題型.明確計算公式是解決這個問題的關鍵.13、①②④【解析】①由a=b,得5﹣2a=5﹣2b,根據等式的性質先將式子兩邊同時乘以-2,再將等式兩邊同時加上5,等式仍成立,所以本選項正確,②由a=b,得ac=bc,根據等式的性質,等式兩邊同時乘以相同的式子,等式仍成立,所以本選項正確,③由a=b,得,根據等式的性質,等式兩邊同時除以一個不為0的數或式子,等式仍成立,因為可能為0,所以本選項不正確,④由,得3a=2b,根據等式的性質,等式兩邊同時乘以相同的式子6c,等式仍成立,所以本選項正確,⑤因為互為相反數的平方也相等,由a2=b2,得a=b,或a=-b,所以本選項錯誤,故答案為:①②④.14、2【解析】

根據勾股定理可以得出AB的長度,從而得知CD的長度,再根據旋轉的性質可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點D為AB的中點,∴,∵將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.本題考查的是勾股定理、直角三角形斜邊中點的性質和旋轉的性質,能夠根據勾股定理求出AB的長是解題的關鍵.15、a1.【解析】試題分析:根據同底數冪的除法底數不變指數相減,可得答案.原式=a10-1=a1,故答案為a1.考點:同底數冪的除法.16、a(b+3)(b﹣3).【解析】

根據提公因式,平方差公式,可得答案.【詳解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案為:a(b+3)(b﹣3).本題考查了因式分解,一提,二套,三檢查,分解要徹底.17、17【解析】

根據餅狀圖求出25元所占比重為20%,再根據加權平均數求法即可解題.【詳解】解:1-30%-50%=20%,∴.本題考查了加權平均數的計算方法,屬于簡單題,計算25元所占權比是解題關鍵.三、解答題(共7小題,滿分69分)18、解:(1)圖見解析;(2)證明見解析.【解析】

(1)根據角平分線的作法作出∠ABC的平分線即可.(2)首先根據角平分線的性質以及平行線的性質得出∠ABE=∠AEB,進而得出△ABO≌△FBO,進而利用AF⊥BE,BO=EO,AO=FO,得出即可.【詳解】解:(1)如圖所示:(2)證明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四邊形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四邊形ABFE為菱形.19、(1)長為18米、寬為7米或長為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.【解析】

(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,再根據矩形面積公式列方程求解即可得到答案.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,再根據矩形面積公式列方程,求得方程無解,即假設不成立.【詳解】(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,根據題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設成立,即長為18米、寬為7米或長為14米、寬為9米.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,根據題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.20、(1)180;(2)每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.【解析】分析:(1)根據“當每件的銷售價每增加1元,每天的銷售數量將減少10件”,即可解答;(2)根據等量關系“利潤=(售價﹣進價)×銷量”列出函數關系式,根據二次函數的性質,即可解答.詳解:(1)由題意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案為180;(2)由題意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.點睛:此題主要考查了二次函數的應用,根據已知得出二次函數的最值是中考中考查重點,同學們應重點掌握.21、123n2n2+x-n【解析】分析:(1)、首先根據題意得出前6個“三角形數”分別是多少,從而得出a的值;前5個“正方形數”分別是多少,從而得出b的值;前4個“正方形數”分別是多少,從而得出c的值;(2)、根據前面得出的一般性得出答案.詳解:(1)∵前6個“三角形數”分別是:1=、3=、6=、10=、15=、21=,

∴第n個“三角形數”是,∴a=7×82=17×82=1.

∵前5個“正方形數”分別是:1=12,4=22,9=32,16=42,25=52,

∴第n個“正方形數”是n2,∴b=62=2.

∵前4個“正方形數”分別是:1=,5=,12=,22=,

∴第n個“五邊形數”是n(3n?1)2n(3n?1)2,∴c==3.

(2)第n個“正方形數”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,

∴第n個“五邊形數”是n2+x-n.點睛:此題主要考查了圖形的變化類問題,要熟練掌握,解答此類問題的關鍵是首先應找出圖形哪些部分發生了變化,是按照什么規律變化的,通過分析找到各部分的變化規律后直接利用規律求解.探尋規律要認真觀察、仔細思考,善用聯想來解決這類問題.22、(1)y=x2﹣2x﹣3;(2);(3)當k發生改變時,直線QH過定點,定點坐標為(0,﹣2)【解析】

(1)把點A(﹣1,0),C(0,﹣3)代入拋物線表達式求得b,c,即可得出拋物線的解析式;(2)作CH⊥EF于H,設N的坐標為(1,n),證明Rt△NCH∽△MNF,可得m=n2+3n+1,因為﹣4≤n≤0,即可得出m的取值范圍;(3)設點P(x1,y1),Q(x2,y2),則點H(﹣x1,y1),設直線HQ表達式為y=ax+t,用待定系數法和韋達定理可求得a=x2﹣x1,t=﹣2,即可得出直線QH過定點(0,﹣2).【詳解】解:(1)∵拋物線y=x2+bx+c經過點A、C,把點A(﹣1,0),C(0,﹣3)代入,得:,解得,∴拋物線的解析式為y=x2﹣2x﹣3;(2)如圖,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴拋物線的頂點坐標E(1,﹣4),設N的坐標為(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴當時,m最小值為;當n=﹣4時,m有最大值,m的最大值=16﹣12+1=1.∴m的取值范圍是.(3)設點P(x1,y1),Q(x2,y2),∵過點P作x軸平行線交拋物線于點H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,設直線HQ表達式為y=ax+t,將點Q(x2,y2),H(﹣x1,y1)代入,得,∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,∴a=x2﹣x1,∵=(x2﹣x1)x2+t,∴t=﹣2,∴直線HQ表達式為y=(x2﹣x1)x﹣2,∴當k發生改變時,直線QH過定點,定點坐標為(0,﹣2).本題主要考查的是二次函數的綜合應用,解答本題主要應用了配方法求二次函數的最值、待定系數法求一次函數的解析式、(2)問通過相似三角形建立m與n的函數關系式是解題的關鍵.23、見解析【解析】

依據條件得出∠C=∠DHG=90°,∠CGE=∠GED,依據F是AD的中點,FG∥AE,即可得到FG是線段ED的垂直平分線,進而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.【詳解】證明:∵AF=FG,∴∠FAG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠FAG,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE,∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論