吉林省鎮賚縣鎮賚鎮中學2024-2025學年下學期初三期中數學試題含解析_第1頁
吉林省鎮賚縣鎮賚鎮中學2024-2025學年下學期初三期中數學試題含解析_第2頁
吉林省鎮賚縣鎮賚鎮中學2024-2025學年下學期初三期中數學試題含解析_第3頁
吉林省鎮賚縣鎮賚鎮中學2024-2025學年下學期初三期中數學試題含解析_第4頁
吉林省鎮賚縣鎮賚鎮中學2024-2025學年下學期初三期中數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省鎮賚縣鎮賚鎮中學2024-2025學年下學期初三期中數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知某校女子田徑隊23人年齡的平均數和中位數都是13歲,但是后來發現其中一位同學的年齡登記錯誤,將14歲寫成15歲,經重新計算后,正確的平均數為a歲,中位數為b歲,則下列結論中正確的是()A.a<13,b=13B.a<13,b<13C.a>13,b<13D.a>13,b=132.如圖,在矩形ABCD中,P、R分別是BC和DC上的點,E、F分別是AP和RP的中點,當點P在BC上從點B向點C移動,而點R不動時,下列結論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點P的位置有關3.下列圖形中,周長不是32m的圖形是()A. B. C. D.4.已知:如圖,在扇形中,,半徑,將扇形沿過點的直線折疊,點恰好落在弧上的點處,折痕交于點,則弧的長為()A. B. C. D.5.若x是2的相反數,|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或46.在一個不透明的口袋中裝有4個紅球和若干個白球,他們除顏色外其他完全相同.通過多次摸球實驗后發現,摸到紅球的頻率穩定在25%附近,則口袋中白球可能有()A.16個 B.15個 C.13個 D.12個7.一、單選題如圖中的小正方形邊長都相等,若△MNP≌△MEQ,則點Q可能是圖中的()A.點A B.點B C.點C D.點D8.已知拋物線y=ax2+bx+c的圖象如圖所示,頂點為(4,6),則下列說法錯誤的是()A.b2>4ac B.ax2+bx+c≤6C.若點(2,m)(5,n)在拋物線上,則m>n D.8a+b=09.1﹣的相反數是()A.1﹣ B.﹣1 C. D.﹣110.如果菱形的一邊長是8,那么它的周長是()A.16 B.32 C.163 D.32311.下列說法錯誤的是()A.的相反數是2 B.3的倒數是C. D.,0,4這三個數中最小的數是012.將一次函數的圖象向下平移2個單位后,當時,的取值范圍是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖放置的正方形,正方形,正方形,…都是邊長為的正方形,點在軸上,點,…,都在直線上,則的坐標是__________,的坐標是______.14.如圖,圓錐底面半徑為rcm,母線長為10cm,其側面展開圖是圓心角為216°的扇形,則r的值為.15.若a:b=1:3,b:c=2:5,則a:c=_____.16.如圖,某小型水庫欄水壩的橫斷面是四邊形ABCD,DC∥AB,測得迎水坡的坡角α=30°,已知背水坡的坡比為1.2:1,壩頂部DC寬為2m,壩高為6m,則壩底AB的長為_____m.17.若關于的一元二次方程無實數根,則一次函數的圖象不經過第_________象限.18.如圖,在直角三角形ABC中,∠ACB=90°,CA=4,點P是半圓弧AC的中點,連接BP,線段即把圖形APCB(指半圓和三角形ABC組成的圖形)分成兩部分,則這兩部分面積之差的絕對值是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.(1)求證:AE是⊙O的切線;(2)如果AB=4,AE=2,求⊙O的半徑.20.(6分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當四邊形ENFM為矩形時,求證:BE=BN.21.(6分)周末,甲、乙兩名大學生騎自行車去距學校6000米的凈月潭公園.兩人同時從學校出發,以a米/分的速度勻速行駛.出發4.5分鐘時,甲同學發現忘記帶學生證,以1.5a米/分的速度按原路返回學校,取完學生證(在學校取學生證所用時間忽略不計),繼續以返回時的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設甲、乙兩名大學生距學校的路程為s(米),乙同學行駛的時間為t(分),s與t之間的函數圖象如圖所示.(1)求a、b的值.(2)求甲追上乙時,距學校的路程.(3)當兩人相距500米時,直接寫出t的值是.22.(8分)計算:|﹣1|+﹣(1﹣)0﹣()﹣1.23.(8分)如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)求證:△AEF是等腰直角三角形;(2)如圖2,將△CED繞點C逆時針旋轉,當點E在線段BC上時,連接AE,求證:AF=AE;(3)如圖3,將△CED繞點C繼續逆時針旋轉,當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.24.(10分)已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.(1)求∠AEC的度數;(2)請你判斷AE、BE、AC三條線段之間的等量關系,并證明你的結論.25.(10分)如圖,點C在線段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求證:CF⊥DE于點F.26.(12分)如圖,在△ABC中,AB=BC,CD⊥AB于點D,CD=BD.BE平分∠ABC,點H是BC邊的中點.連接DH,交BE于點G.連接CG.(1)求證:△ADC≌△FDB;(2)求證:(3)判斷△ECG的形狀,并證明你的結論.27.(12分)目前節能燈在城市已基本普及,今年某省面向農村地區推廣,為響應號召,某商場用3300元購進節能燈100只,這兩種節能燈的進價、售價如表:進價元只售價元只甲種節能燈3040乙種節能燈3550求甲、乙兩種節能燈各進多少只?全部售完100只節能燈后,該商場獲利多少元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:∵原來的平均數是13歲,∴13×23=299(歲),∴正確的平均數a=299-12∵原來的中位數13歲,將14歲寫成15歲,最中間的數還是13歲,∴b=13;故選A.考點:1.平均數;2.中位數.2、C【解析】試題分析:連接AR,根據勾股定理得出AR=的長不變,根據三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點:1、矩形性質,2、勾股定理,3、三角形的中位線3、B【解析】

根據所給圖形,分別計算出它們的周長,然后判斷各選項即可.【詳解】A.L=(6+10)×2=32,其周長為32.B.該平行四邊形的一邊長為10,另一邊長大于6,故其周長大于32.C.L=(6+10)×2=32,其周長為32.D.L=(6+10)×2=32,其周長為32.采用排除法即可選出B故選B.此題考查多邊形的周長,解題在于掌握計算公式.4、D【解析】

如圖,連接OD.根據折疊的性質、圓的性質推知△ODB是等邊三角形,則易求∠AOD=110°-∠DOB=50°;然后由弧長公式弧長的公式來求的長【詳解】解:如圖,連接OD.解:如圖,連接OD.

根據折疊的性質知,OB=DB.

又∵OD=OB,

∴OD=OB=DB,即△ODB是等邊三角形,

∴∠DOB=60°.

∵∠AOB=110°,

∴∠AOD=∠AOB-∠DOB=50°,

∴的長為=5π.

故選D.本題考查了弧長的計算,翻折變換(折疊問題).折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.所以由折疊的性質推知△ODB是等邊三角形是解答此題的關鍵之處.5、D【解析】

直接利用相反數以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數,|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.此題主要考查了有理數的混合運算,正確得出x,y的值是解題關鍵.6、D【解析】

由摸到紅球的頻率穩定在25%附近得出口袋中得到紅色球的概率,進而求出白球個數即可.【詳解】解:設白球個數為:x個,

∵摸到紅色球的頻率穩定在25%左右,

∴口袋中得到紅色球的概率為25%,

∴,

解得:x=12,

經檢驗x=12是原方程的根,

故白球的個數為12個.

故選:D.本題考查了利用頻率估計概率,根據大量反復試驗下頻率穩定值即概率得出是解題的關鍵.7、D【解析】

根據全等三角形的性質和已知圖形得出即可.【詳解】解:∵△MNP≌△MEQ,∴點Q應是圖中的D點,如圖,故選:D.本題考查了全等三角形的性質,能熟記全等三角形的性質的內容是解此題的關鍵,注意:全等三角形的對應角相等,對應邊相等.8、C【解析】觀察可得,拋物線與x軸有兩個交點,可得,即,選項A正確;拋物線開口向下且頂點為(4,6)可得拋物線的最大值為6,即,選項B正確;由題意可知拋物線的對稱軸為x=4,因為4-2=2,5-4=1,且1<2,所以可得m<n,選項C錯誤;因對稱軸,即可得8a+b=0,選項D正確,故選C.點睛:本題主要考查了二次函數y=ax2+bx+c圖象與系數的關系,解決本題的關鍵是從圖象中獲取信息,利用數形結合思想解決問題,本題難度適中.9、B【解析】

根據相反數的的定義解答即可.【詳解】根據a的相反數為-a即可得,1﹣的相反數是﹣1.故選B.本題考查了相反數的定義,熟知相反數的定義是解決問題的關鍵.10、B【解析】

根據菱形的四邊相等,可得周長【詳解】菱形的四邊相等∴菱形的周長=4×8=32故選B.本題考查了菱形的性質,并靈活掌握及運用菱形的性質11、D【解析】試題分析:﹣2的相反數是2,A正確;3的倒數是,B正確;(﹣3)﹣(﹣5)=﹣3+5=2,C正確;﹣11,0,4這三個數中最小的數是﹣11,D錯誤,故選D.考點:1.相反數;2.倒數;3.有理數大小比較;4.有理數的減法.12、C【解析】

直接利用一次函數平移規律,即k不變,進而利用一次函數圖象的性質得出答案.【詳解】將一次函數向下平移2個單位后,得:,當時,則:,解得:,當時,,故選C.本題主要考查了一次函數平移,解一元一次不等式,正確利用一次函數圖象上點的坐標性質得出是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

先求出OA的長度,然后利用含30°的直角三角形的性質得到點D的坐標,探索規律,從而得到的坐標即可.【詳解】分別過點作y軸的垂線交y軸于點,∵點B在上設∴同理,都是含30°的直角三角形∵,∴同理,點的橫坐標為縱坐標為故點的坐標為故答案為:;.本題主要考查含30°的直角三角形的性質,找到點的坐標規律是解題的關鍵.14、1.【解析】試題分析:∵圓錐底面半徑為rcm,母線長為10cm,其側面展開圖是圓心角為211°的扇形,∴2πr=×2π×10,解得r=1.故答案為:1.【考點】圓錐的計算.15、2∶1【解析】分析:已知a、b兩數的比為1:3,根據比的基本性質,a、b兩數的比1:3=(1×2):(3×2)=2:6;而b、c的比為:2:5=(2×3):(5×3)=6:1;,所以a、c兩數的比為2:1.詳解:a:b=1:3=(1×2):(3×2)=2:6;

b:c=2:5=(2×3):(5×3)=6:1;,

所以a:c=2:1;

故答案為2:1.點睛:本題主要考查比的基本性質的實際應用,如果已知甲乙、乙丙兩數的比,那么可以根據比的基本性質求出任意兩數的比.16、(7+6)【解析】

過點C作CE⊥AB,DF⊥AB,垂足分別為:E,F,得到兩個直角三角形和一個矩形,在Rt△AEF中利用DF的長,求得線段AF的長;在Rt△BCE中利用CE的長求得線段BE的長,然后與AF、EF相加即可求得AB的長.【詳解】解:如圖所示:過點C作CE⊥AB,DF⊥AB,垂足分別為:E,F,

∵壩頂部寬為2m,壩高為6m,

∴DC=EF=2m,EC=DF=6m,

∵α=30°,

∴BE=(m),

∵背水坡的坡比為1.2:1,

∴,

解得:AF=5(m),

則AB=AF+EF+BE=5+2+6=(7+6)m,

故答案為(7+6)m.本題考查了解直角三角形的應用,解題的關鍵是利用銳角三角函數的概念和坡度的概念求解.17、一【解析】

根據一元二次方程的定義和判別式的意義得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根據一次函數的性質判斷一次函數y=mx+m的圖象所在的象限即可.【詳解】∵關于x的一元二次方程mx2-2x-1=0無實數根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函數y=mx+m的圖象經過第二、三、四象限,不經過第一象限.故答案為一.本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數根;當△=0時,方程有兩個相等的實數根;當△<0時,方程無實數根.也考查了一次函數的性質.18、4【解析】

連接把兩部分的面積均可轉化為規則圖形的面積,不難發現兩部分面積之差的絕對值即為的面積的2倍.【詳解】解:連接OP、OB,∵圖形BAP的面積=△AOB的面積+△BOP的面積+扇形OAP的面積,圖形BCP的面積=△BOC的面積+扇形OCP的面積?△BOP的面積,又∵點P是半圓弧AC的中點,OA=OC,∴扇形OAP的面積=扇形OCP的面積,△AOB的面積=△BOC的面積,∴兩部分面積之差的絕對值是點睛:考查扇形面積和三角形的面積,把不規則圖形的面積轉化為規則圖形的面積是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(1)⊙O半徑為【解析】

(1)連接OA,利用已知首先得出OA∥DE,進而證明OA⊥AE就能得到AE是⊙O的切線;(1)通過證明△BAD∽△AED,再利用對應邊成比例關系從而求出⊙O半徑的長.【詳解】解:(1)連接OA,∵OA=OD,∴∠1=∠1.∵DA平分∠BDE,∴∠1=∠2.∴∠1=∠2.∴OA∥DE.∴∠OAE=∠4,∵AE⊥CD,∴∠4=90°.∴∠OAE=90°,即OA⊥AE.又∵點A在⊙O上,∴AE是⊙O的切線.(1)∵BD是⊙O的直徑,∴∠BAD=90°.∵∠3=90°,∴∠BAD=∠3.又∵∠1=∠2,∴△BAD∽△AED.∴,∵BA=4,AE=1,∴BD=1AD.在Rt△BAD中,根據勾股定理,得BD=.∴⊙O半徑為.20、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由已知條件易得∠EAG=∠FCG,AG=GC結合∠AGE=∠FGC可得△EAG≌△FCG,從而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四邊形ENFM是平行四邊形;(2)如下圖,由四邊形ENFM為矩形可得EG=NG,結合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,則∠BAC=∠ACB,AE=CN,從而可得AB=CB,由此可得BE=BN.詳解:(1)∵四邊形ABCD為平行四四邊形邊形,∴AB//CD.∴∠EAG=∠FCG.∵點G為對角線AC的中點,∴AG=GC.∵∠AGE=∠FGC,∴△EAG≌△FCG.∴EG=FG.同理MG=NG.∴四邊形ENFM為平行四邊形.(2)∵四邊形ENFM為矩形,∴EF=MN,且EG=,GN=,∴EG=NG,又∵AG=CG,∠AGE=∠CGN,∴△EAG≌△NCG,∴∠BAC=∠ACB,AE=CN,∴AB=BC,∴AB-AE=CB-CN,∴BE=BN.點睛:本題是一道考查平行四邊形的判定和性質及矩形性質的題目,熟練掌握相關圖形的性質和判定是順利解題的關鍵.21、(1)a的值為200,b的值為30;(2)甲追上乙時,與學校的距離4100米;(3)1.1或17.1.【解析】

(1)根據速度=路程÷時間,即可解決問題.(2)首先求出甲返回用的時間,再列出方程即可解決問題.(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)由題意a==200,b==30,∴a=200,b=30.(2)+4.1=7.1,設t分鐘甲追上乙,由題意,300(t?7.1)=200t,解得t=22.1,22.1×200=4100,∴甲追上乙時,距學校的路程4100米.(3)兩人相距100米是的時間為t分鐘.由題意:1.1×200(t?4.1)+200(t?4.1)=100,解得t=1.1分鐘,或300(t?7.1)+100=200t,解得t=17.1分鐘,故答案為1.1分鐘或17.1分鐘.點睛:本題主要考查了函數圖象的讀圖能力和函數與實際問題結合的應用.要能根據函數圖象的性質和圖象上的數據分析即圖象的變化趨勢得出函數的類型和所需要的條件,結合實際意義得到正確的結論.22、1【解析】試題分析:先分別計算絕對值,算術平方根,零指數冪和負指數冪,然后相加即可.試題解析:解:|﹣1|+﹣(1﹣)0﹣()﹣1=1+3﹣1﹣2=1.點睛:本題考查了實數的計算,熟悉計算的順序和相關的法則是解決此題的關鍵.23、(1)證明見解析;(2)證明見解析;(3)4.【解析】試題分析:(1)依據AE=EF,∠DEC=∠AEF=90°,即可證明△AEF是等腰直角三角形;(2)連接EF,DF交BC于K,先證明△EKF≌△EDA,再證明△AEF是等腰直角三角形即可得出結論;(3)當AD=AC=AB時,四邊形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.試題解析:解:(1)如圖1.∵四邊形ABFD是平行四邊形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如圖2,連接EF,DF交BC于K.∵四邊形ABFD是平行四邊形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如圖3,當AD=AC=AB時,四邊形ABFD是菱形,設AE交CD于H,依據AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.點睛:本題屬于四邊形綜合題,主要考查了全等三角形的判定和性質、等腰直角三角形的判定和性質、平行四邊形的性質、菱形的性質以及勾股定理等知識,解題的關鍵是熟練掌握全等三角形的判定和性質,尋找全等的條件是解題的難點.24、(1)90°;(1)AE1+EB1=AC1,證明見解析.【解析】

(1)根據題意得到DE是線段BC的垂直平分線,根據線段垂直平分線的性質得到EB=EC,根據等腰三角形的性質、三角形內角和定理計算即可;(1)根據勾股定理解答.【詳解】解:(1)∵點D是BC邊的中點,DE⊥BC,∴DE是線段BC的垂直平分線,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.本題考查的是線段垂直平分線的性質定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.25、證明見解析.【解析】

根據平行線性質得出∠A=∠B,根據SAS證△ACD≌△BEC,推出DC=CE,根據等腰三角形的三線合一定理推出即可.【詳解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論