山東省菏澤市曹縣重點中學2025屆初三模擬考試(二)數學試題含解析_第1頁
山東省菏澤市曹縣重點中學2025屆初三模擬考試(二)數學試題含解析_第2頁
山東省菏澤市曹縣重點中學2025屆初三模擬考試(二)數學試題含解析_第3頁
山東省菏澤市曹縣重點中學2025屆初三模擬考試(二)數學試題含解析_第4頁
山東省菏澤市曹縣重點中學2025屆初三模擬考試(二)數學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省菏澤市曹縣重點中學2025屆初三模擬考試(二)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知點A,B分別是反比例函數y=(x<0),y=(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣42.如圖,已知是中的邊上的一點,,的平分線交邊于,交于,那么下列結論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE3.下列各圖中,∠1與∠2互為鄰補角的是()A. B.C. D.4.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件5.九年級(2)班同學根據興趣分成五個小組,各小組人數分布如圖所示,則在扇形圖中第一小組對應的圓心角度數是()A. B. C. D.6.下列事件是必然事件的是()A.任意作一個平行四邊形其對角線互相垂直B.任意作一個矩形其對角線相等C.任意作一個三角形其內角和為D.任意作一個菱形其對角線相等且互相垂直平分7.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結論:①若C,O兩點關于AB對稱,則OA=;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④8.如圖,在矩形ABCD中,P、R分別是BC和DC上的點,E、F分別是AP和RP的中點,當點P在BC上從點B向點C移動,而點R不動時,下列結論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點P的位置有關9.許昌市2017年國內生產總值完成1915.5億元,同比增長9.3%,增速居全省第一位,用科學記數法表示1915.5億應為()A.1915.15×108 B.19.155×1010C.1.9155×1011 D.1.9155×101210.關于的敘述正確的是()A.= B.在數軸上不存在表示的點C.=± D.與最接近的整數是3二、填空題(共7小題,每小題3分,滿分21分)11.二次根式中字母x的取值范圍是_____.12.一次函數y=(k﹣3)x﹣k+2的圖象經過第一、三、四象限.則k的取值范圍是_____.13.從正n邊形一個頂點引出的對角線將它分成了8個三角形,則它的每個內角的度數是______.14.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半徑為1,點P是斜邊AB上的點,過點P作⊙C的一條切線PQ(點Q是切點),則線段PQ的最小值為_____.15.已知:a(a+2)=1,則a2+=_____.16.經過某十字路口的汽車,它可能繼續直行,也可能向左轉或向右轉.如果這三種可能性大小相同,現有兩輛汽車先后經過這個十字路口,則至少有一輛汽車向左轉的概率是___.17.方程x+1=的解是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.(1)求證:與相切;(2)連接,求的值.19.(5分)一個不透明的袋子中,裝有標號分別為1、-1、2的三個小球,他們除標號不同外,其余都完全相同;攪勻后,從中任意取一個球,標號為正數的概率是;攪勻后,從中任取一個球,標號記為k,然后放回攪勻再取一個球,標號記為b,求直線y=kx+b經過一、二、三象限的概率.20.(8分)數學興趣小組為了研究中小學男生身高y(cm)和年齡x(歲)的關系,從某市官網上得到了該市2017年統計的中小學男生各年齡組的平均身高,見下表:如圖已經在直角坐標系中描出了表中數據對應的點,并發現前5個點大致位于直線AB上,后7個點大致位于直線CD上.年齡組x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)該市男學生的平均身高從歲開始增加特別迅速.(2)求直線AB所對應的函數表達式.(3)直接寫出直線CD所對應的函數表達式,假設17歲后該市男生身高增長速度大致符合直線CD所對應的函數關系,請你預測該市18歲男生年齡組的平均身高大約是多少?21.(10分)如圖,經過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關于直線x=2對稱,求拋物線的函數表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.22.(10分)如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面積.23.(12分)如圖,已知二次函數y=ax2+2x+c的圖象經過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.求二次函數y=ax2+2x+c的表達式;連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.24.(14分)如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).求直線與雙曲線的表達式;過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A,B分別在反比例函數y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據相似三角形面積的比等于相似比的平方,即可求出k的值【詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,

∴∠ACO=∠ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=∠AOC,

∴△OBD∽△AOC,

又∵∠AOB=90°,tan∠BAO=,

∴=,

∴=,即,

解得k=±4,

又∵k<0,

∴k=-4,

故選:D.此題考查了相似三角形的判定與性質、反比例函數的性質以及直角三角形的性質.解題時注意掌握數形結合思想的應用,注意掌握輔助線的作法。2、C【解析】

根據相似三角形的判定,采用排除法,逐項分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊和對應角.3、D【解析】根據鄰補角的定義可知:只有D圖中的是鄰補角,其它都不是.故選D.4、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.5、C【解析】試題分析:由題意可得,第一小組對應的圓心角度數是:×360°=72°,故選C.考點:1.扇形統計圖;2.條形統計圖.6、B【解析】

必然事件就是一定發生的事件,根據定義對各個選項進行判斷即可.【詳解】解:A、任意作一個平行四邊形其對角線互相垂直不一定發生,是隨機事件,故本選項錯誤;B、矩形的對角線相等,所以任意作一個矩形其對角線相等一定發生,是必然事件,故本選項正確;C、三角形的內角和為180°,所以任意作一個三角形其內角和為是不可能事件,故本選項錯誤;D、任意作一個菱形其對角線相等且互相垂直平分不一定發生,是隨機事件,故選項錯誤,故選:B.解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件.不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.熟練掌握相關圖形的性質也是解題的關鍵.7、D【解析】分析:①先根據直角三角形30°的性質和勾股定理分別求AC和AB,由對稱的性質可知:AB是OC的垂直平分線,所以

②當OC經過AB的中點E時,OC最大,則C、O兩點距離的最大值為4;

③如圖2,當∠ABO=30°時,易證四邊形OACB是矩形,此時AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據四點共圓可知:A、C、B、O四點共圓,則AB為直徑,由垂徑定理相關推論:平分弦(不是直徑)的直徑垂直于這條弦,但當這條弦也是直徑時,即OC是直徑時,AB與OC互相平分,但AB與OC不一定垂直;

④如圖3,半徑為2,圓心角為90°,根據弧長公式進行計算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點關于AB對稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點為E,連接OE、CE,∵∴當OC經過點E時,OC最大,則C.O兩點距離的最大值為4;所以②正確;③如圖2,當時,∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點D運動路徑是:以O為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點睛:屬于三角形的綜合體,考查了直角三角形的性質,直角三角形斜邊上中線的性質,軸對稱的性質,弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.8、C【解析】試題分析:連接AR,根據勾股定理得出AR=的長不變,根據三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點:1、矩形性質,2、勾股定理,3、三角形的中位線9、C【解析】

科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.【詳解】用科學記數法表示1915.5億應為1.9155×1011,故選C.考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.10、D【解析】

根據二次根式的加法法則、實數與數軸上的點是一一對應的關系、二次根式的化簡及無理數的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數軸上存在表示的點;選項C,;選項D,與最接近的整數是=1.故選D.本題考查了二次根式的加法法則、實數與數軸上的點是一一對應的關系、二次根式的化簡及無理數的估算等知識點,熟記這些知識點是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、x≤1【解析】

二次根式有意義的條件就是被開方數是非負數,即可求解.【詳解】根據題意得:1﹣x≥0,解得x≤1.故答案為:x≤1主要考查了二次根式的意義和性質.性質:二次根式中的被開方數必須是非負數,否則二次根式無意義.12、k>3【解析】分析:根據函數圖象所經過的象限列出不等式組通過解該不等式組可以求得k的取值范圍.詳解:∵一次函教y=(k?3)x?k+2的圖象經過第一、三、四象限,∴解得,k>3.故答案是:k>3.點睛:此題主要考查了一次函數圖象,一次函數的圖象有四種情況:

①當時,函數的圖象經過第一、二、三象限;

②當時,函數的圖象經過第一、三、四象限;

③當時,函數的圖象經過第一、二、四象限;

④當時,函數的圖象經過第二、三、四象限.13、144°【解析】

根據多邊形內角和公式計算即可.【詳解】解:由題知,這是一個10邊形,根據多邊形內角和公式:每個內角等于.故答案為:144°.此題重點考察學生對多邊形內角和公式的應用,掌握計算公式是解題的關鍵.14、.【解析】

當PC⊥AB時,線段PQ最短;連接CP、CQ,根據勾股定理知PQ2=CP2﹣CQ2,先求出CP的長,然后由勾股定理即可求得答案.【詳解】連接CP、CQ;如圖所示:∵PQ是⊙C的切線,∴CQ⊥PQ,∠CQP=90°,根據勾股定理得:PQ2=CP2﹣CQ2,∴當PC⊥AB時,線段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.故答案為:.本題考查了切線的性質以及勾股定理的運用;注意掌握輔助線的作法,注意當PC⊥AB時,線段PQ最短是關鍵.15、3【解析】

先根據a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+進行計算.【詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.本題考查的是代數式求解,熟練掌握代入法是解題的關鍵.16、.【解析】

根據題意,畫出樹狀圖,然后根據樹狀圖和概率公式求概率即可.【詳解】解:畫樹狀圖得:共有9種等可能的結果,至少有一輛汽車向左轉的有5種情況,至少有一輛汽車向左轉的概率是:.故答案為:.此題考查的是求概率問題,掌握樹狀圖的畫法和概率公式是解決此題的關鍵.17、x=1【解析】

無理方程兩邊平方轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到無理方程的解.【詳解】兩邊平方得:(x+1)1=1x+5,即x1=4,

開方得:x=1或x=-1,

經檢驗x=-1是增根,無理方程的解為x=1.

故答案為x=1三、解答題(共7小題,滿分69分)18、(1)見解析;(2)【解析】

(1)連接,,易證為等邊三角形,可得,由等腰三角形的性質及角的和差關系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得與相切;(2)作于點.設,則,.根據兩組對邊互相平行可證明四邊形為平行四邊形,由可證四邊形為菱形,由(1)得,從而可求出、的值,從而可知的長度,利用銳角三角函數的定義即可求出的值.【詳解】(1)連接,.∵是的直徑,弦于點,∴,.∵,∴.∴為等邊三角形.∴,∠DAE=∠EAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°,∴.∴與相切.(2)連接EF,作于點.設,則,.∵與相切,∴.又∵,∴.又∵,∴四邊形為平行四邊形.∵,∴四邊形為菱形.∴,.由(1)得,∴,.∴.∵在中,,∴.本題考查圓的綜合問題,涉及切線的判定與性質,菱形的判定與性質,等邊三角形的性質及銳角三角函數,考查學生綜合運用知識的能力,熟練掌握相關性質是解題關鍵.19、(1);(2)【解析】【分析】(1)直接運用概率的定義求解;(2)根據題意確定k>0,b>0,再通過列表計算概率.【詳解】解:(1)因為1、-1、2三個數中由兩個正數,所以從中任意取一個球,標號為正數的概率是.(2)因為直線y=kx+b經過一、二、三象限,所以k>0,b>0,又因為取情況:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9種情況,符合條件的有4種,所以直線y=kx+b經過一、二、三象限的概率是.【點睛】本題考核知識點:求規概率.解題關鍵:把所有的情況列出,求出要得到的情況的種數,再用公式求出.20、(1)11;(2)y=3.6x+90;(3)該市18歲男生年齡組的平均身高大約是174cm左右.【解析】

(1)根據統計圖仔細觀察即可得出結果(2)先設函數表達式,選取兩個點帶入求值即可(3)先設函數表達式,選取兩個點帶入求值,把帶入預測即可.【詳解】解:(1)由統計圖可得,該市男學生的平均身高從11歲開始增加特別迅速,故答案為:11;(2)設直線AB所對應的函數表達式∵圖象經過點則,解得.即直線AB所對應的函數表達式:(3)設直線CD所對應的函數表達式為:,,得,即直線CD所對應的函數表達式為:把代入得即該市18歲男生年齡組的平均身高大約是174cm左右.此題重點考察學生對統計圖和一次函數的應用,熟練掌握一次函數表達式的求法是解題的關鍵.21、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】

(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對稱軸,A(﹣2,0),∴B(6,0),∵點C(0,﹣4),將A,B,C的坐標分別代入,解得:,,,∴拋物線的函數表達式為;(3)存在,理由為:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關于直線x=2對稱,∴由拋物線的對稱性可知,E點的橫坐標為4,又∵OC=4,∴E的縱坐標為﹣4,∴存在點E(4,﹣4);(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點E′的縱坐標是4,∴,解得:,,∴點E′的坐標為(,4),同理可得點E″的坐標為(,4).22、(1)證明見解析;(1).【解析】

(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據矩形的性質求出OC=OD,根據菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,連接OE,交CD于點F,根據菱形的性質得出F為CD中點,求出OF=BC=1,求出OE=1OF=1,求出菱形的面積即可.【詳解】證明:,,四邊形OCED是平行四邊形,矩形ABCD,,,,,四邊形OCED是菱形;在矩形ABCD中,,,,,,連接OE,交CD于點F,四邊形OCED為菱形,為CD中點,為BD中點,,,.本題主要考查了矩形的性質和菱形的性質和判定的應用,能靈活運用定理進行推理是解此題的關鍵,注意:菱形的面積等于對角線積的一半.23、(1)y=﹣x2+2x+3(2)(,)(3)當點P的坐標為(,)時,四邊形ACPB的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論