




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省沈陽市沈北新區重點達標名校2024-2025學年初三下學期開學摸底數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.a2?a3=a6 B.(a2)3=a6 C.a2+a2=a3 D.a6÷a2=a32.如圖是一個放置在水平桌面的錐形瓶,它的俯視圖是()A. B. C. D.3.下列二次函數的圖象,不能通過函數y=3x2的圖象平移得到的是(
)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x24.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤5.下列二次根式中,最簡二次根式的是()A. B. C. D.6.如圖,要使□ABCD成為矩形,需添加的條件是()A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠27.2017年5月5日國產大型客機C919首飛成功,圓了中國人的“大飛機夢”,它顏值高性能好,全長近39米,最大載客人數168人,最大航程約5550公里.數字5550用科學記數法表示為()A.0.555×104 B.5.55×103 C.5.55×104 D.55.5×1038.拋物線y=mx2﹣8x﹣8和x軸有交點,則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠09.正方形ABCD在直角坐標系中的位置如圖所示,將正方形ABCD繞點A按順時針方向旋轉180°后,C點的坐標是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)10.下列說法正確的是()A.某工廠質檢員檢測某批燈泡的使用壽命采用普查法B.已知一組數據1,a,4,4,9,它的平均數是4,則這組數據的方差是7.6C.12名同學中有兩人的出生月份相同是必然事件D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”中,任取其中一個圖形,恰好既是中心對稱圖形,又是軸對稱圖形的概率是二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在邊長為1的小正方形網格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.12.已知關于x的方程x2+mx+4=0有兩個相等的實數根,則實數m的值是______.13.電子跳蚤游戲盤是如圖所示的△ABC,AB=AC=BC=1.如果跳蚤開始時在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3=BP2;…;跳蚤按照上述規則一直跳下去,第n次落點為Pn(n為正整數),則點P2016與點P2017之間的距離為_________.14.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.15.如圖,在菱形紙片中,,,將菱形紙片翻折,使點落在的中點處,折痕為,點,分別在邊,上,則的值為________.16.如圖,校園內有一棵與地面垂直的樹,數學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).17.七巧板是我們祖先的一項創造,被譽為“東方魔板”,如圖所示是一副七巧板,若已知S△BIC=1,據七巧板制作過程的認識,求出平行四邊形EFGH_____.三、解答題(共7小題,滿分69分)18.(10分)某初級中學正在展開“文明城市創建人人參與,志愿服務我當先行”的“創文活動”為了了解該校志愿者參與服務情況,現對該校全體志愿者進行隨機抽樣調查.根據調查數據繪制了如下所示不完整統計圖.條形統計圖中七年級、八年級、九年級、教師分別指七年級、八年級、九年級、教師志愿者中被抽到的志愿者,扇形統計圖中的百分數指的是該年級被抽到的志愿者數與樣本容量的比.請補全條形統計圖;若該校共有志愿者600人,則該校九年級大約有多少志愿者?19.(5分)探究:在一次聚會上,規定每兩個人見面必須握手,且只握手1次若參加聚會的人數為3,則共握手次:;若參加聚會的人數為5,則共握手次;若參加聚會的人數為n(n為正整數),則共握手次;若參加聚會的人共握手28次,請求出參加聚會的人數.拓展:嘉嘉給琪琪出題:“若線段AB上共有m個點(含端點A,B),線段總數為30,求m的值.”琪琪的思考:“在這個問題上,線段總數不可能為30”琪琪的思考對嗎?為什么?20.(8分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.21.(10分)實踐體驗:(1)如圖1:四邊形ABCD是矩形,試在AD邊上找一點P,使△BCP為等腰三角形;(2)如圖2:矩形ABCD中,AB=13,AD=12,點E在AB邊上,BE=3,點P是矩形ABCD內或邊上一點,且PE=5,點Q是CD邊上一點,求PQ得最值;問題解決:(3)如圖3,四邊形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,點E在AB邊上,BE=2,點P是四邊形ABCD內或邊上一點,且PE=2,求四邊形PADC面積的最值.22.(10分)對于某一函數給出如下定義:若存在實數p,當其自變量的值為p時,其函數值等于p,則稱p為這個函數的不變值.在函數存在不變值時,該函數的最大不變值與最小不變值之差q稱為這個函數的不變長度.特別地,當函數只有一個不變值時,其不變長度q為零.例如:下圖中的函數有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G2,函數G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.23.(12分)在“雙十二”期間,兩個超市開展促銷活動,活動方式如下:超市:購物金額打9折后,若超過2000元再優惠300元;超市:購物金額打8折.某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在兩個超市的標價相同,根據商場的活動方式:(1)若一次性付款4200元購買這種籃球,則在商場購買的數量比在商場購買的數量多5個,請求出這種籃球的標價;(2)學校計劃購買100個籃球,請你設計一個購買方案,使所需的費用最少.(直接寫出方案)24.(14分)如圖,,,,求證:。
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題解析:A.故錯誤.B.正確.C.不是同類項,不能合并,故錯誤.D.故選B.點睛:同底數冪相乘,底數不變,指數相加.同底數冪相除,底數不變,指數相減.2、B【解析】
根據俯視圖是從上面看到的圖形解答即可.【詳解】錐形瓶從上面往下看看到的是兩個同心圓.故選B.本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.3、D【解析】分析:根據平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y=2x2,故本選項正確.故選D.4、D【解析】
根據實數的運算法則即可一一判斷求解.【詳解】①有理數的0次冪,當a=0時,a0=0;②為同底數冪相乘,底數不變,指數相加,正確;③中2–2=,原式錯誤;④為有理數的混合運算,正確;⑤為合并同類項,正確.故選D.5、C【解析】
判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數為小數,不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數,含能開得盡方的因數或因式,故D選項錯誤;故選C.考點:最簡二次根式.6、B【解析】
根據一個角是90度的平行四邊形是矩形進行選擇即可.【詳解】解:A、是鄰邊相等,可判定平行四邊形ABCD是菱形;
B、是一內角等于90°,可判斷平行四邊形ABCD成為矩形;
C、是對角線互相垂直,可判定平行四邊形ABCD是菱形;
D、是對角線平分對角,可判斷平行四邊形ABCD成為菱形;故選:B.本題主要應用的知識點為:矩形的判定.①對角線相等且相互平分的四邊形為矩形.②一個角是90度的平行四邊形是矩形.7、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:5550=5.55×1.故選B.本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.8、C【解析】
根據二次函數的定義及拋物線與x軸有交點,即可得出關于m的一元一次不等式組,解之即可得出m的取值范圍.【詳解】解:∵拋物線和軸有交點,,解得:且.故選.本題考查了拋物線與x軸的交點、二次函數的定義以及解一元一次不等式組,牢記“當時,拋物線與x軸有交點是解題的關鍵.9、B【解析】試題分析:正方形ABCD繞點A順時針方向旋轉180°后,C點的對應點與C一定關于A對稱,A是對稱點連線的中點,據此即可求解.試題解析:AC=2,則正方形ABCD繞點A順時針方向旋轉180°后C的對應點設是C′,則AC′=AC=2,則OC′=3,故C′的坐標是(3,0).故選B.考點:坐標與圖形變化-旋轉.10、B【解析】
分別用方差、全面調查與抽樣調查、隨機事件及概率的知識逐一進行判斷即可得到答案.【詳解】A.某工廠質檢員檢測某批燈泡的使用壽命時,檢測范圍比較大,因此適宜采用抽樣調查的方法,故本選項錯誤;B.根據平均數是4求得a的值為2,則方差為[(1?4)2+(2?4)2+(4?4)2+(4?4)2+(9?4)2]=7.6,故本選項正確;C.12個同學的生日月份可能互不相同,故本事件是隨機事件,故錯誤;D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”六個圖形中有3個既是軸對稱圖形,又是中心對稱圖形,所以,恰好既是中心對稱圖形,又是軸對稱圖形的概率是,故本選項錯誤.故答案選B.本題考查的知識點是概率公式、全面調查與抽樣調查、方差及隨機事件,解題的關鍵是熟練的掌握概率公式、全面調查與抽樣調查、方差及隨機事件.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對應邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1此題考查了相似三角形的判定與性質,三角函數的定義.此題難度適中,解題的關鍵是準確作出輔助線,注意轉化思想與數形結合思想的應用.12、±4【解析】分析:由方程有兩個相等的實數根,得到根的判別式等于0,列出關于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個相等的實數根,∴解得:故答案為點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.13、3【解析】∵△ABC為等邊三角形,邊長為1,根據跳動規律可知,
∴P0P1=3,P1P2=2,P2P3=3,P3P4=2,…
觀察規律:當落點腳標為奇數時,距離為3,當落點腳標為偶數時,距離為2,
∵2017是奇數,
∴點P2016與點P2017之間的距離是3.
故答案為:3.【點睛】考查的是等邊三角形的性質,根據題意求出P0P1,P1P2,P2P3,P3P4的值,找出規律是解答此題的關鍵.14、-3<x<1【解析】試題分析:根據拋物線的對稱軸為x=﹣1,一個交點為(1,0),可推出另一交點為(﹣3,0),結合圖象求出y>0時,x的范圍.解:根據拋物線的圖象可知:拋物線的對稱軸為x=﹣1,已知一個交點為(1,0),根據對稱性,則另一交點為(﹣3,0),所以y>0時,x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點:二次函數的圖象.15、【解析】
過點作,交延長線于,連接,交于,根據折疊的性質可得,,根據同角的余角相等可得,可得,由平行線的性質可得,根據的三角函數值可求出、的長,根據為中點即可求出的長,根據余弦的定義的值即可得答案.【詳解】過點作,交延長線于,連接,交于,∵四邊形是菱形,∴,∵將菱形紙片翻折,使點落在的中點處,折痕為,∴,,∵,,∴,∴,∵,∴,∴,∵,,∴,∴,,∵為中點,∴,∴,∴,∴.故答案為本題考查了折疊的性質、菱形的性質及三角函數的定義,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,熟練掌握三角函數的定義并熟記特殊角的三角函數值是解題關鍵.16、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關,而且與時間有關,不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關鍵是根據三角函數的幾何意義得出各線段的比例關系,從而得出答案.17、1【解析】
根據七巧板的性質可得BI=IC=CH=HE,因為S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得點G到EF的距離為sin45°,根據平行四邊形的面積即可求解.【詳解】由七巧板性質可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴BI?IC=1,∴BI=IC=,∴BC==1,∵EF=BC=1,FG=EH=BI=,∴點G到EF的距離為:,∴平行四邊形EFGH的面積=EF?=1×=1.故答案為1本題考查了七巧板的性質、等腰直角三角形的性質及平行四邊形的面積公式,熟知七巧板的性質是解決問題的關鍵.三、解答題(共7小題,滿分69分)18、(1)作圖見解析;(2)1.【解析】試題分析:(1)根據百分比=計算即可解決問題,求出八年級、九年級、被抽到的志愿者人數畫出條形圖即可;(2)用樣本估計總體的思想,即可解決問題;試題解析:解:(1)由題意總人數=20÷40%=50人,八年級被抽到的志愿者:50×30%=15人九年級被抽到的志愿者:50×20%=10人,條形圖如圖所示:(2)該校共有志愿者600人,則該校九年級大約有600×20%=1人.答:該校九年級大約有1名志愿者.19、探究:(1)3,1;(2);(3)參加聚會的人數為8人;拓展:琪琪的思考對,見解析.【解析】
探究:(1)根據握手次數=參會人數×(參會人數-1)÷2,即可求出結論;
(2)由(1)的結論結合參會人數為n,即可得出結論;(3)由(2)的結論結合共握手28次,即可得出關于n的一元二次方程,解之取其正值即可得出結論;拓展:將線段數當成握手數,頂點數看成參會人數,由(2)的結論結合線段總數為2,即可得出關于m的一元二次方程,解之由該方程的解均不為整數可得出琪琪的思考對.【詳解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案為3;1.(2)∵參加聚會的人數為n(n為正整數),∴每人需跟(n-1)人握手,∴握手總數為.故答案為.(3)依題意,得:=28,
整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去).答:參加聚會的人數為8人.拓展:琪琪的思考對,理由如下:如果線段數為2,則由題意,得:=2,整理,得:m2-m-60=0,解得m1=,m2=(舍去).∵m為正整數,∴沒有符合題意的解,∴線段總數不可能為2.本題考查了一元二次方程的應用以及列代數式,解題的關鍵是:(1)根據各數量之間的關系,列式計算;(2)根據各數量之間的關系,用含n的代數式表示出握手總數;(3)(拓展)找準等量關系,正確列出一元二次方程.20、(1)矩形的周長為4m;(2)矩形的面積為1.【解析】
(1)根據題意和矩形的周長公式列出代數式解答即可.(2)根據題意列出矩形的面積,然后把m=7,n=4代入進行計算即可求得.【詳解】(1)矩形的長為:m﹣n,矩形的寬為:m+n,矩形的周長為:2[(m-n)+(m+n)]=4m;(2)矩形的面積為S=(m+n)(m﹣n)=m2-n2,當m=7,n=4時,S=72-42=1.本題考查了矩形的周長與面積、列代數式問題、平方差公式等,解題的關鍵是根據題意和矩形的性質列出代數式解答.21、(1)見解析;(2)PQmin=7,PQmax=13;(3)Smin=,Smax=18.【解析】
(1)根據全等三角形判定定理求解即可.(2)以E為圓心,以5為半徑畫圓,①當E、P、Q三點共線時最PQ最小,②當P點在位置時PQ最大,分類討論即可求解.(3)以E為圓心,以2為半徑畫圓,分類討論出P點在位置時,四邊形PADC面積的最值即可.【詳解】(1)當P為AD中點時,,△BCP為等腰三角形.(2)以E為圓心,以5為半徑畫圓①當E、P、Q三點共線時最PQ最小,PQ的最小值是12-5=7.②當P點在位置時PQ最大,PQ的最大值是(3)以E為圓心,以2為半徑畫圓.當點p為位置時,四邊形PADC面積最大.當點p為位置時,四邊形PADC最小=四邊形+三角形=.本題主要考查了等腰三角形性質,直線,面積最值問題,數形結合思想是解題關鍵.22、詳見解析.【解析】試題分析:(1)根據定義分別求解即可求得答案;(1)①首先由函數y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G1,可得函數G的圖象關于x=m對稱,然后根據定義分別求得函數的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數y=x﹣1,令y=x,則x﹣1=x,無解;∴函數y=x﹣1沒有不變值;∵y=x-1=,令y=x,則,解得:x=±1,∴函數的不變值為±1,q=1﹣(﹣1)=1.∵函數y=x1,令y=x,則x=x1,解得:x1=2,x1=1,∴函數y=x1的不變值為:2或1,q=1﹣2=1;(1)①函數y=1x1﹣bx,令y=x,則x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵記函數y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G1,∴函數G的圖象關于x=m對稱,∴G:y=.∵當x1﹣1x=x時,x3=2,x4=3;當(1m﹣x)1﹣1(1m﹣x)=x時,△=1+8m,當△<2,即m<﹣時,q=x4﹣x3=3;當△≥2,即m≥﹣時,x5=,x6=.①當﹣≤m≤2時,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合題意,舍去);②∵當x5=x4時,m=1,當x6=x3時,m=3;當2<m<1時,x3=2(舍去),x4=3,此時2<x5<x4,x6<2,q=x4﹣x6>3(舍去);當1≤m≤3時,x3=2(舍去),x4=3,此時2<x5<x4,x6>2,q=x4﹣x6<3;當m>3時,x3=2(舍去),x4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年低碳城市建設中綠色交通系統規劃案例報告
- 2025年食品飲料行業塑料包裝減量減排策略報告
- 幼兒園歌唱活動講課
- 煤礦改建項目規劃設計方案
- 動脈栓塞個案護理
- 小班活動設計教案
- Excel 2025高效應用培訓大綱
- 高清手機直播補光燈企業制定與實施新質生產力項目商業計劃書
- 平臺經濟AI應用行業深度調研及發展項目商業計劃書
- 物流設備智能檢測行業跨境出海項目商業計劃書
- 安全生產三管三必須專題培訓
- 電飯煲檢測大綱
- 勞動合同書電子版pdf正規范本(通用版)
- JGJT10-2011 混凝土泵送技術規程
- 自發性腎破裂的護理查房
- 醫院保潔、中央運輸服務投標方案(技術方案)
- 房屋維修工程應急施工方案
- 人教版小學道德與法治二年級下冊第二單元《我們好好玩》作業設計
- 辦公家具供貨安裝、保障實施及售后服務方案
- 研究生高分論文寫作(下篇)
- 精益改善周五階段
評論
0/150
提交評論