




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter7
DemandForecasting
inaSupplyChainSupplyChainManagement
(3rdEdition)
7-1OutlineTheroleofforecastinginasupplychainCharacteristicsofforecastsComponentsofforecastsandforecastingmethodsBasicapproachtodemandforecastingTimeseriesforecastingmethodsMeasuresofforecasterrorForecastingdemandatTahoeSaltForecastinginpractice2RoleofForecasting
inaSupplyChainThebasisforallstrategicandplanningdecisionsinasupplychainUsedforbothpushandpullprocessesExamples:Production:scheduling,inventory,aggregateplanningMarketing:salesforceallocation,promotions,newproductionintroductionFinance:plant/equipmentinvestment,budgetaryplanningPersonnel:workforceplanning,hiring,layoffsAllofthesedecisionsareinterrelated3CharacteristicsofForecastsForecastsarealwayswrong.Shouldincludeexpectedvalueandmeasureoferror.Long-termforecastsarelessaccuratethanshort-termforecasts(forecasthorizonisimportant)Aggregateforecastsaremoreaccuratethandisaggregateforecasts4ForecastingMethodsQualitative:primarilysubjective;relyonjudgmentandopinionTimeSeries:usehistoricaldemandonlyStaticAdaptiveCausal:usetherelationshipbetweendemandandsomeotherfactortodevelopforecastSimulationImitateconsumerchoicesthatgiverisetodemandCancombinetimeseriesandcausalmethods5ComponentsofanObservationObserveddemand(O)=Systematiccomponent(S)+Randomcomponent(R)Level(currentdeseasonalizeddemand)Trend(growthordeclineindemand)Seasonality(predictableseasonalfluctuation)Systematiccomponent:ExpectedvalueofdemandRandomcomponent:Thepartoftheforecastthatdeviates
fromthesystematiccomponentForecasterror:differencebetweenforecastandactualdemand6TimeSeriesForecastingForecastdemandforthenextfourquarters.7TimeSeriesForecasting8ForecastingMethodsStaticAdaptiveMovingaverageSimpleexponentialsmoothingHolt’smodel(withtrend)Winter’smodel(withtrendandseasonality)9BasicApproachto
DemandForecastingUnderstandtheobjectivesofforecastingIntegratedemandplanningandforecastingIdentifymajorfactorsthatinfluencethedemandforecastUnderstandandidentifycustomersegmentsDeterminetheappropriateforecastingtechniqueEstablishperformanceanderrormeasuresfortheforecast10TimeSeries
ForecastingMethodsGoalistopredictsystematiccomponentofdemandMultiplicative:(level)(trend)(seasonalfactor)Additive:level+trend+seasonalfactorMixed:(level+trend)(seasonalfactor)StaticmethodsAdaptiveforecasting11StaticMethodsAssumeamixedmodel:Systematiccomponent=(level+trend)(seasonalfactor)Ft+l=[L+(t+l)T]St+l=forecastinperiodtfordemandinperiodt+lL=estimateoflevelforperiod0T=estimateoftrendSt=estimateofseasonalfactorforperiodtDt=actualdemandinperiodtFt=forecastofdemandinperiodt12StaticMethodsEstimatinglevelandtrendEstimatingseasonalfactors13EstimatingLevelandTrendBeforeestimatinglevelandtrend,demanddatamustbedeseasonalizedDeseasonalizeddemand=demandthatwouldhavebeenobservedintheabsenceofseasonalfluctuationsPeriodicity(p)thenumberofperiodsafterwhichtheseasonalcyclerepeatsitselffordemandatTahoeSalt(Table7.1,Figure7.1)p=414TimeSeriesForecasting
(Table7.1)Forecastdemandforthenextfourquarters.15TimeSeriesForecasting
(Figure7.1)16EstimatingLevelandTrendBeforeestimatinglevelandtrend,demanddatamustbedeseasonalizedDeseasonalizeddemand=demandthatwouldhavebeenobservedintheabsenceofseasonalfluctuationsPeriodicity(p)thenumberofperiodsafterwhichtheseasonalcyclerepeatsitselffordemandatTahoeSalt(Table7.1,Figure7.1)p=417DeseasonalizingDemand [Dt-(p/2)+Dt+(p/2)+S2Di]/2pforpevenDt= (sumisfromi=t+1-(p/2)tot+1+(p/2))
SDi/pforpodd
(sumisfromi=t-(p/2)tot+(p/2)),p/2truncatedtolowerinteger18DeseasonalizingDemandFortheexample,p=4isevenFort=3:D3={D1+D5+Sum(i=2to4)[2Di]}/8={8000+10000+[(2)(13000)+(2)(23000)+(2)(34000)]}/8=19750D4={D2+D6+Sum(i=3to5)[2Di]}/8={13000+18000+[(2)(23000)+(2)(34000)+(2)(10000)]/8=2062519DeseasonalizingDemandThenincludetrendDt=L+tTwhereDt=deseasonalizeddemandinperiodtL=level(deseasonalizeddemandatperiod0)T=trend(rateofgrowthofdeseasonalizeddemand)Trendisdeterminedbylinearregressionusingdeseasonalizeddemandasthedependentvariableandperiodastheindependentvariable(canbedoneinExcel)Intheexample,L=18,439andT=52420TimeSeriesofDemand
(Figure7.3)21EstimatingSeasonalFactors Usethepreviousequationtocalculatedeseasonalizeddemandforeachperiod St=Dt/Dt=seasonalfactorforperiodt Intheexample, D2=18439+(524)(2)=19487D2=13000 S2=13000/19487=0.67 Theseasonalfactorsfortheotherperiodsarecalculatedinthesamemanner22EstimatingSeasonalFactors
(Fig.7.4)23EstimatingSeasonalFactorsTheoverallseasonalfactorfora“season”isthenobtainedbyaveragingallofthefactorsfora“season”Iftherearerseasonalcycles,forallperiodsoftheformpt+i,1<i<p,theseasonalfactorforseasoniisSi=[Sum(j=0tor-1)
Sjp+i]/r
Intheexample,thereare3seasonalcyclesinthedataandp=4,soS1=(0.42+0.47+0.52)/3=0.47S2=(0.67+0.83+0.55)/3=0.68S3=(1.15+1.04+1.32)/3=1.17S4=(1.66+1.68+1.66)/3=1.6724EstimatingtheForecastUsingtheoriginalequation,wecanforecastthenextfourperiodsofdemand:F13=(L+13T)S1=[18439+(13)(524)](0.47)=11868F14=(L+14T)S2=[18439+(14)(524)](0.68)=17527F15=(L+15T)S3=[18439+(15)(524)](1.17)=30770F16=(L+16T)S4=[18439+(16)(524)](1.67)=4479425AdaptiveForecastingTheestimatesoflevel,trend,andseasonalityareadjustedaftereachdemandobservationGeneralstepsinadaptiveforecastingMovingaverageSimpleexponentialsmoothingTrend-correctedexponentialsmoothing(Holt’smodel)Trend-andseasonality-correctedexponentialsmoothing(Winter’smodel)26BasicFormulafor
AdaptiveForecastingFt+1=(Lt+lT)St+1=forecastforperiodt+linperiodt
Lt=Estimateoflevelattheendofperiodt
Tt=Estimateoftrendattheendofperiodt
St=Estimateofseasonalfactorforperiodt
Ft=Forecastofdemandforperiodt(madeperiodt-1orearlier)Dt=Actualdemandobservedinperiodt
Et=Forecasterrorinperiodt
At=Absolutedeviationforperiodt=|Et|MAD=MeanAbsoluteDeviation=averagevalueofAt
27GeneralStepsin
AdaptiveForecastingInitialize:Computeinitialestimatesoflevel(L0),trend(T0),andseasonalfactors(S1,…,Sp).Thisisdoneasinstaticforecasting.Forecast:Forecastdemandforperiodt+1usingthegeneralequationEstimateerror:ComputeerrorEt+1=Ft+1-Dt+1
Modifyestimates:Modifytheestimatesoflevel(Lt+1),trend(Tt+1),andseasonalfactor(St+p+1),giventheerrorEt+1intheforecastRepeatsteps2,3,and4foreachsubsequentperiod28MovingAverageUsedwhendemandhasnoobservabletrendorseasonalitySystematiccomponentofdemand=levelThelevelinperiodtistheaveragedemandoverthelastNperiods(theN-periodmovingaverage)Currentforecastforallfutureperiodsisthesameandisbasedonthecurrentestimateofthelevel Lt=(Dt+Dt-1+…+Dt-N+1)/N Ft+1=LtandFt+n=Lt
Afterobservingthedemandforperiodt+1,revisetheestimatesasfollows: Lt+1=(Dt+1+Dt+…+Dt-N+2)/N Ft+2=Lt+1
29MovingAverageExampleFromTahoeSaltexample(Table7.1)Attheendofperiod4,whatistheforecastdemandforperiods5through8usinga4-periodmovingaverage?L4=(D4+D3+D2+D1)/4=(34000+23000+13000+8000)/4=19500F5=19500=F6=F7=F8Observedemandinperiod5tobeD5=10000Forecasterrorinperiod5,E5=F5-D5=19500-10000=9500Reviseestimateoflevelinperiod5:L5=(D5+D4+D3+D2)/4=(10000+34000+23000+13000)/4=20000F6=L5=2000030SimpleExponentialSmoothingUsedwhendemandhasnoobservabletrendorseasonalitySystematiccomponentofdemand=levelInitialestimateoflevel,L0,assumedtobetheaverageofallhistoricaldata L0=[Sum(i=1ton)Di]/n Currentforecastforallfutureperiodsisequaltothecurrentestimateofthelevelandisgivenasfollows: Ft+1=LtandFt+n=Lt
AfterobservingdemandDt+1,revisetheestimateofthelevel: Lt+1=aDt+1+(1-a)Lt
Lt+1=Sum(n=0tot+1)[a(1-a)nDt+1-n]31SimpleExponentialSmoothingExampleFromTahoeSaltdata,forecastdemandforperiod1usingexponentialsmoothingL0=averageofall12periodsofdata=Sum(i=1to12)[Di]/12=22083F1=L0=22083Observeddemandforperiod1=D1=8000Forecasterrorforperiod1,E1,isasfollows:E1=F1-D1=22083-8000=14083Assuminga=0.1,revisedestimateoflevelforperiod1:L1=aD1+(1-a)L0=(0.1)(8000)+(0.9)(22083)=20675F2=L1=20675Notethattheestimateoflevelforperiod1islowerthaninperiod032Trend-CorrectedExponentialSmoothing(Holt’sModel)AppropriatewhenthedemandisassumedtohavealevelandtrendinthesystematiccomponentofdemandbutnoseasonalityObtaininitialestimateoflevelandtrendbyrunningalinearregressionofthefollowingform:
Dt=at+b T0=a L0=b Inperiodt,theforecastforfutureperiodsisexpressedasfollows: Ft+1=Lt+Tt
Ft+n=Lt+nTt
33Trend-CorrectedExponentialSmoothing(Holt’sModel)Afterobservingdemandforperiodt,revisetheestimatesforlevelandtrendasfollows:Lt+1=aDt+1+(1-a)(Lt+Tt)Tt+1=b(Lt+1-Lt)+(1-b)Tt
a=smoothingconstantforlevelb=smoothingconstantfortrendExample:TahoeSaltdemanddata.Forecastdemandforperiod1usingHolt’smodel(trendcorrectedexponentialsmoothing)Usinglinearregression,L0=12015(linearintercept)T0=1549(linearslope)34Holt’sModelExample(continued)Forecastforperiod1:F1=L0+T0=12015+1549=13564Observeddemandforperiod1=D1=8000E1=F1-D1=13564-8000=5564Assumea=0.1,b=0.2L1=aD1+(1-a)(L0+T0)=(0.1)(8000)+(0.9)(13564)=13008T1=b(L1-L0)+(1-b)T0=(0.2)(13008-12015)+(0.8)(1549)=1438F2=L1+T1=13008+1438=14446F5=L1+4T1=13008+(4)(1438)=1876035Trend-andSeasonality-CorrectedExponentialSmoothingAppropriatewhenthesystematiccomponentofdemandisassumedtohavealevel,trend,andseasonalfactorSystematiccomponent=(level+trend)(seasonalfactor)AssumeperiodicitypObtaininitialestimatesoflevel(L0),trend(T0),seasonalfactors(S1,…,Sp)usingprocedureforstaticforecastingInperiodt,theforecastforfutureperiodsisgivenby: Ft+1=(Lt+Tt)(St+1)andFt+n=(Lt+nTt)St+n
36Trend-andSeasonality-CorrectedExponentialSmoothing(continued)Afterobservingdemandforperiodt+1,reviseestimatesforlevel,trend,andseasonalfactorsasfollows:Lt+1=a(Dt+1/St+1)+(1-a)(Lt+Tt)Tt+1=b(Lt+1-Lt)+(1-b)TtSt+p+1=g(Dt+1/Lt+1)+(1-g)St+1
a=smoothingconstantforlevelb=smoothingconstantfortrendg=smoothingconstantforseasonalfactorExample:TahoeSaltdata.Forecastdemandforperiod1usingWinter’smodel.Initialestimatesoflevel,trend,andseasonalfactorsareobtainedasinthestaticforecastingcase37Trend-andSeasonality-CorrectedExponentialSmoothingExample(continued)L0=18439T0=524 S1=0.47,S2=0.68,S3=1.17,S4=1.67F1=(L0+T0)S1=(18439+524)(0.47)=8913Theobserveddemandforperiod1=D1=8000Forecasterrorforperiod1=E1=F1-D1=8913-8000=913Assumea=0.1,b=0.2,g=0.1;reviseestimatesforlevelandtrendforperiod1andforseasonalfactorforperiod5L1=a(D1/S1)+(1-a)(L0+T0)=(0.1)(8000/0.47)+(0.9)(18439+524)=18769T1=b(L1-L0)+(1-b)T0=(0.2)(18769-18439)+(0.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45448-2025再生變形高溫合金原料
- GB/T 13460-2025再生橡膠通用規范
- 項目管理復雜問題解析試題及答案
- 產品銷售協議合同2025
- 中等職業教育聯合辦學協議
- 企業金融管理的變革方向試題及答案
- 未來展望2025年銀行從業資格證試題及答案
- 證券從業資格證考試復習材料的選擇與使用技巧試題及答案
- 微生物耐藥性檢測與解讀試題及答案
- 靈活運用項目管理考試的理論知識試題及答案
- 2024年交管12123學法減分考試題庫及完整答案【考點梳理】
- 急診護理一科一特色
- 永輝超市干貨部培訓課件
- BIPAP呼吸機的使用與護理課件
- 統編版三年級下冊第二單元“寓言故事”大單元整體學習設計
- 卵巢癌術后護理查房
- icu家屬健康宣教
- 技術創新與產品研發投入效果評估與優化報告
- 挪用公款還款協議書范本
- 架空輸電線路基礎設計規程2023
- TWI-JM(工作改善)課件
評論
0/150
提交評論