上海交通大學(xué)《新媒體數(shù)據(jù)分析與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
上海交通大學(xué)《新媒體數(shù)據(jù)分析與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
上海交通大學(xué)《新媒體數(shù)據(jù)分析與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
上海交通大學(xué)《新媒體數(shù)據(jù)分析與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
上海交通大學(xué)《新媒體數(shù)據(jù)分析與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)上海交通大學(xué)《新媒體數(shù)據(jù)分析與應(yīng)用》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,決策樹(shù)是一種常用的分類(lèi)算法。假設(shè)要根據(jù)客戶(hù)的特征預(yù)測(cè)他們是否會(huì)購(gòu)買(mǎi)某種產(chǎn)品,以下關(guān)于決策樹(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.決策樹(shù)通過(guò)對(duì)數(shù)據(jù)進(jìn)行逐步分裂,構(gòu)建樹(shù)狀結(jié)構(gòu)來(lái)進(jìn)行分類(lèi)預(yù)測(cè)B.可以通過(guò)剪枝技術(shù)來(lái)防止決策樹(shù)過(guò)擬合,提高模型的泛化能力C.決策樹(shù)的生成過(guò)程完全是自動(dòng)的,不需要人工干預(yù)和調(diào)整D.隨機(jī)森林是基于決策樹(shù)的集成學(xué)習(xí)算法,能夠提高預(yù)測(cè)的準(zhǔn)確性和穩(wěn)定性2、假設(shè)要分析兩個(gè)變量之間的因果關(guān)系,以下關(guān)于因果分析方法的描述,正確的是:()A.相關(guān)性強(qiáng)就意味著存在因果關(guān)系B.格蘭杰因果檢驗(yàn)可以確定變量之間的單向或雙向因果關(guān)系C.觀察兩個(gè)變量的變化趨勢(shì)就能判斷因果關(guān)系D.不需要考慮其他潛在因素的影響,直接得出因果結(jié)論3、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測(cè)一個(gè)生產(chǎn)線(xiàn)上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測(cè)方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類(lèi)的方法4、數(shù)據(jù)分析在醫(yī)療領(lǐng)域有著重要的應(yīng)用。以下關(guān)于數(shù)據(jù)分析在醫(yī)療中的作用,不準(zhǔn)確的是()A.可以幫助醫(yī)療機(jī)構(gòu)分析患者的病歷數(shù)據(jù),優(yōu)化治療方案,提高醫(yī)療質(zhì)量B.通過(guò)對(duì)醫(yī)療影像數(shù)據(jù)的分析,輔助疾病的診斷和篩查C.利用傳感器收集的實(shí)時(shí)健康數(shù)據(jù)進(jìn)行監(jiān)測(cè)和預(yù)警,實(shí)現(xiàn)個(gè)性化的醫(yī)療服務(wù)D.數(shù)據(jù)分析在醫(yī)療領(lǐng)域的應(yīng)用還處于初級(jí)階段,對(duì)醫(yī)療實(shí)踐的影響非常有限5、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們面對(duì)一個(gè)包含大量缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄的數(shù)據(jù)集,以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)刪除包含過(guò)多缺失值的行或列來(lái)處理缺失數(shù)據(jù),但這可能導(dǎo)致信息丟失B.對(duì)于錯(cuò)誤數(shù)據(jù),可以通過(guò)與其他可靠數(shù)據(jù)源進(jìn)行對(duì)比或基于數(shù)據(jù)的邏輯關(guān)系進(jìn)行修正C.重復(fù)記錄可以直接保留,因?yàn)樗鼈儾粫?huì)對(duì)數(shù)據(jù)分析結(jié)果產(chǎn)生太大影響D.運(yùn)用數(shù)據(jù)填充技術(shù),如使用均值、中位數(shù)或眾數(shù)來(lái)填充缺失值,但需要謹(jǐn)慎選擇填充方法6、在數(shù)據(jù)可視化中,選擇合適的圖表類(lèi)型對(duì)于清晰傳達(dá)信息至關(guān)重要。假設(shè)要展示不同地區(qū)在過(guò)去十年間的人口增長(zhǎng)趨勢(shì),以下哪種圖表可能是最合適的?()A.餅圖B.雷達(dá)圖C.折線(xiàn)圖D.氣泡圖7、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的效果可以通過(guò)多種方式進(jìn)行評(píng)估。以下關(guān)于數(shù)據(jù)預(yù)處理效果評(píng)估的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理效果可以通過(guò)比較預(yù)處理前后的數(shù)據(jù)質(zhì)量指標(biāo)來(lái)評(píng)估B.數(shù)據(jù)預(yù)處理效果可以通過(guò)對(duì)預(yù)處理后的數(shù)據(jù)進(jìn)行分析和建模來(lái)評(píng)估C.數(shù)據(jù)預(yù)處理效果評(píng)估應(yīng)考慮數(shù)據(jù)的特點(diǎn)和分析目的,選擇合適的評(píng)估方法D.數(shù)據(jù)預(yù)處理效果評(píng)估只需要關(guān)注數(shù)據(jù)的準(zhǔn)確性,其他方面可以忽略不計(jì)8、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行分組統(tǒng)計(jì),以下哪個(gè)函數(shù)在Python中經(jīng)常被使用?()A.groupby()B.merge()C.concat()D.pivot_table()9、數(shù)據(jù)分析在金融領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一家銀行要評(píng)估客戶(hù)的信用風(fēng)險(xiǎn)。以下關(guān)于數(shù)據(jù)分析在金融中的描述,哪一項(xiàng)是不正確的?()A.可以建立信用評(píng)分模型,預(yù)測(cè)客戶(hù)違約的可能性B.分析市場(chǎng)趨勢(shì),制定投資策略C.數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用完全沒(méi)有風(fēng)險(xiǎn),不會(huì)導(dǎo)致錯(cuò)誤的決策D.監(jiān)測(cè)金融交易,防范欺詐行為10、在數(shù)據(jù)挖掘中,若要對(duì)數(shù)據(jù)進(jìn)行分類(lèi),以下哪種算法對(duì)噪聲和缺失值具有較好的容忍性?()A.決策樹(shù)B.樸素貝葉斯C.支持向量機(jī)D.隨機(jī)森林11、在數(shù)據(jù)預(yù)處理階段,若發(fā)現(xiàn)數(shù)據(jù)中存在大量缺失值,以下哪種處理方法較為合適?()A.直接刪除含缺失值的記錄B.用均值或中位數(shù)填充缺失值C.根據(jù)其他變量推測(cè)缺失值D.以上方法均可12、在進(jìn)行數(shù)據(jù)分析時(shí),需要處理數(shù)據(jù)的不平衡問(wèn)題。假設(shè)要分析信用卡欺詐檢測(cè)數(shù)據(jù),其中欺詐交易的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于正常交易。以下哪種方法在處理這種數(shù)據(jù)不平衡問(wèn)題時(shí)更能提高模型對(duì)少數(shù)類(lèi)(欺詐交易)的識(shí)別能力?()A.過(guò)采樣B.欠采樣C.合成少數(shù)類(lèi)過(guò)采樣技術(shù)(SMOTE)D.以上方法結(jié)合使用13、在數(shù)據(jù)分析中,時(shí)間序列分析用于處理具有時(shí)間順序的數(shù)據(jù)。假設(shè)我們要分析股票價(jià)格的歷史數(shù)據(jù)。以下關(guān)于時(shí)間序列分析的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以使用移動(dòng)平均等方法對(duì)時(shí)間序列進(jìn)行平滑處理,去除噪聲B.自回歸模型(AR)和移動(dòng)平均模型(MA)可以用于預(yù)測(cè)時(shí)間序列的未來(lái)值C.時(shí)間序列數(shù)據(jù)一定是平穩(wěn)的,不需要進(jìn)行平穩(wěn)性檢驗(yàn)D.可以結(jié)合多種時(shí)間序列模型,提高預(yù)測(cè)的準(zhǔn)確性14、在數(shù)據(jù)分析過(guò)程中,數(shù)據(jù)清洗是一個(gè)關(guān)鍵步驟。以下關(guān)于數(shù)據(jù)清洗的目的,錯(cuò)誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)的質(zhì)量B.統(tǒng)一數(shù)據(jù)的格式和單位,便于后續(xù)的分析和處理C.增加數(shù)據(jù)的數(shù)量,提高數(shù)據(jù)分析的結(jié)果的可靠性D.修復(fù)數(shù)據(jù)中的缺失值,確保數(shù)據(jù)的完整性15、數(shù)據(jù)分析中的決策樹(shù)算法具有易于理解和解釋的特點(diǎn)。假設(shè)我們構(gòu)建了一個(gè)決策樹(shù)來(lái)預(yù)測(cè)客戶(hù)是否會(huì)購(gòu)買(mǎi)某產(chǎn)品,以下哪個(gè)因素可能影響決策樹(shù)的復(fù)雜度和準(zhǔn)確性?()A.特征選擇B.分裂準(zhǔn)則C.剪枝策略D.以上都是二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)闡述數(shù)據(jù)挖掘中的情感分析中的深度學(xué)習(xí)方法,如使用卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)等,并舉例說(shuō)明在客戶(hù)評(píng)論分析中的應(yīng)用。2、(本題5分)闡述在數(shù)據(jù)分析中,如何評(píng)估模型的泛化能力,包括使用交叉驗(yàn)證等技術(shù),解釋其原理和作用,并說(shuō)明如何提高模型的泛化能力。3、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何選擇合適的數(shù)據(jù)存儲(chǔ)格式?請(qǐng)考慮數(shù)據(jù)量、讀寫(xiě)性能、數(shù)據(jù)結(jié)構(gòu)等因素,并舉例說(shuō)明。4、(本題5分)說(shuō)明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的預(yù)處理以適應(yīng)聚類(lèi)分析?請(qǐng)闡述包括數(shù)據(jù)標(biāo)準(zhǔn)化、特征選擇等方法,并舉例說(shuō)明。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)教育領(lǐng)域逐漸重視數(shù)據(jù)分析在教學(xué)改進(jìn)和學(xué)生評(píng)估中的應(yīng)用。論述如何通過(guò)對(duì)學(xué)生學(xué)習(xí)數(shù)據(jù)的分析來(lái)制定個(gè)性化的學(xué)習(xí)計(jì)劃、評(píng)估教學(xué)效果,以及如何利用數(shù)據(jù)分析預(yù)測(cè)學(xué)生的學(xué)業(yè)表現(xiàn)和發(fā)現(xiàn)潛在的學(xué)習(xí)問(wèn)題。2、(本題5分)在醫(yī)療科研中,數(shù)據(jù)分析對(duì)于疾病研究和臨床試驗(yàn)具有重要意義。以某醫(yī)學(xué)研究機(jī)構(gòu)為例,闡述如何通過(guò)數(shù)據(jù)分析來(lái)挖掘疾病的潛在關(guān)聯(lián)、評(píng)估治療效果、優(yōu)化臨床試驗(yàn)設(shè)計(jì),以及如何處理醫(yī)療數(shù)據(jù)的復(fù)雜性和倫理問(wèn)題。3、(本題5分)物流行業(yè)在貨物運(yùn)輸和倉(cāng)儲(chǔ)管理中積累了豐富的數(shù)據(jù)。探討如何借助數(shù)據(jù)分析方法,比如運(yùn)輸路徑優(yōu)化、庫(kù)存水平預(yù)測(cè)等,降低物流成本、提高物流服務(wù)的時(shí)效性和準(zhǔn)確性,同時(shí)研究在數(shù)據(jù)實(shí)時(shí)性要求、供應(yīng)鏈不確定性和物流信息系統(tǒng)集成方面所面臨的挑戰(zhàn)及解決途徑。4、(本題5分)隨著共享經(jīng)濟(jì)的發(fā)展,共享單車(chē)和共享汽車(chē)平臺(tái)積累了大量的使用數(shù)據(jù)。以某共享出行平臺(tái)為例,論述如何運(yùn)用數(shù)據(jù)分析來(lái)優(yōu)化車(chē)輛投放策略、提高車(chē)輛利用率、預(yù)測(cè)用戶(hù)需求,以及如何解決數(shù)據(jù)稀疏性和動(dòng)態(tài)變化的問(wèn)題。5、(本題5分)在制造業(yè)的供應(yīng)鏈管理中,數(shù)據(jù)分析可以提高效率和降低成本。以某電子制造企業(yè)為例,分析如何運(yùn)用數(shù)據(jù)分析來(lái)優(yōu)化原材料采購(gòu)、生產(chǎn)計(jì)劃安排、物流配送,以及如何應(yīng)對(duì)供應(yīng)鏈中斷的風(fēng)險(xiǎn)和快速恢復(fù)。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)某在線(xiàn)圍棋用品銷(xiāo)售平臺(tái)記錄了銷(xiāo)售數(shù)據(jù)、圍棋棋盤(pán)材質(zhì)偏好、棋子工藝需求等。提供多樣化的圍棋用品選擇。2、(本題10分)某在線(xiàn)教育平臺(tái)記錄了學(xué)生的學(xué)習(xí)課程、學(xué)習(xí)時(shí)長(zhǎng)、作業(yè)完成情況、考試成績(jī)等數(shù)據(jù)。思

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論