




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
新疆昌吉二中2024-2025學年高三下學期3月統一聯合考試數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設遞增的等比數列的前n項和為,已知,,則()A.9 B.27 C.81 D.2.設過拋物線上任意一點(異于原點)的直線與拋物線交于兩點,直線與拋物線的另一個交點為,則()A. B. C. D.3.已知全集,函數的定義域為,集合,則下列結論正確的是A. B.C. D.4.設數列的各項均為正數,前項和為,,且,則()A.128 B.65 C.64 D.635.復數(i是虛數單位)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.函數的圖象大致為A. B. C. D.7.我國南北朝時的數學著作《張邱建算經》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤8.在等差數列中,,,若(),則數列的最大值是()A. B.C.1 D.39.復數滿足(為虛數單位),則的值是()A. B. C. D.10.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.11.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個12.在展開式中的常數項為A.1 B.2 C.3 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中項的系數與項的系數分別為135與,則展開式所有項系數之和為______.14.實數,滿足約束條件,則的最大值為__________.15.直線過圓的圓心,則的最小值是_____.16.執行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為;直線l的參數方程為(t為參數).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標方程和直線l的普通方程;(2)若點P的極坐標為,,求的值.18.(12分)已知等差數列的公差,且,,成等比數列.(1)求數列的通項公式;(2)設,求數列的前項和.19.(12分)已知函數,曲線在點處的切線方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對于任意,.20.(12分)追求人類與生存環境的和諧發展是中國特色社會主義生態文明的價值取向.為了改善空氣質量,某城市環保局隨機抽取了一年內100天的空氣質量指數()的檢測數據,結果統計如下:空氣質量優良輕度污染中度污染重度污染嚴重污染天數61418272510(1)從空氣質量指數屬于,的天數中任取3天,求這3天中空氣質量至少有2天為優的概率;(2)已知某企業每天的經濟損失(單位:元)與空氣質量指數的關系式為,試估計該企業一個月(按30天計算)的經濟損失的數學期望.21.(12分)已知橢圓:的長半軸長為,點(為橢圓的離心率)在橢圓上.(1)求橢圓的標準方程;(2)如圖,為直線上任一點,過點橢圓上點處的切線為,,切點分別,,直線與直線,分別交于,兩點,點,的縱坐標分別為,,求的值.22.(10分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點E,F是線段PC中點,G為線段EC中點.Ⅰ求證:平面PBD;Ⅱ求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據兩個已知條件求出數列的公比和首項,即得的值.【詳解】設等比數列的公比為q.由,得,解得或.因為.且數列遞增,所以.又,解得,故.故選:A本題主要考查等比數列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.2.C【解析】
畫出圖形,將三角形面積比轉為線段長度比,進而轉為坐標的表達式。寫出直線方程,再聯立方程組,求得交點坐標,最后代入坐標,求得三角形面積比.【詳解】作圖,設與的夾角為,則中邊上的高與中邊上的高之比為,,設,則直線,即,與聯立,解得,從而得到面積比為.故選:解決本題主要在于將面積比轉化為線段長的比例關系,進而聯立方程組求解,是一道不錯的綜合題.3.A【解析】
求函數定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.本題考查集合的運算,解題關鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數的定義域,還是函數的值域,是不等式的解集還是曲線上的點集,都由代表元決定.4.D【解析】
根據,得到,即,由等比數列的定義知數列是等比數列,然后再利用前n項和公式求.【詳解】因為,所以,所以,所以數列是等比數列,又因為,所以,.故選:D本題主要考查等比數列的定義及等比數列的前n項和公式,還考查了運算求解的能力,屬于中檔題.5.B【解析】
利用復數的四則運算以及幾何意義即可求解.【詳解】解:,則復數(i是虛數單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.本題考查了復數的四則運算以及復數的幾何意義,屬于基礎題.6.D【解析】
由題可得函數的定義域為,因為,所以函數為奇函數,排除選項B;又,,所以排除選項A、C,故選D.7.C【解析】設這十等人所得黃金的重量從大到小依次組成等差數列則由等差數列的性質得,故選C8.D【解析】
在等差數列中,利用已知可求得通項公式,進而,借助函數的的單調性可知,當時,取最大即可求得結果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數,在時,單調遞減,且;在時,單調遞減,且.所以數列的最大值是,且,所以數列的最大值是3.故選:D.本題考查等差數列的通項公式,考查數列與函數的關系,借助函數單調性研究數列最值問題,難度較易.9.C【解析】
直接利用復數的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:本題考查復數的除法的運算法則的應用,考查計算能力.10.A【解析】
由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據雙曲線的性質即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.本題考查了雙曲線定義的應用,考查了轉化化歸思想,屬于中檔題.11.C【解析】
計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.12.D【解析】
求出展開項中的常數項及含的項,問題得解。【詳解】展開項中的常數項及含的項分別為:,,所以展開式中的常數項為:.故選:D本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13.64【解析】
由題意先求得的值,再令求出展開式中所有項的系數和.【詳解】的展開式中項的系數與項的系數分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數之和為.故答案為:64本題考查了二項式定理,考查了賦值法求多項式展開式的系數和,屬于基礎題.14.10【解析】
畫出可行域,根據目標函數截距可求.【詳解】解:作出可行域如下:由得,平移直線,當經過點時,截距最小,最大解得的最大值為10故答案為:10考查可行域的畫法及目標函數最大值的求法,基礎題.15.【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當且僅當m=n時取等號.∴則的最小值是4.故答案為:4.本題考查了圓的標準方程、“乘1法”和基本不等式的性質,屬于基礎題.16.8【解析】
根據偽代碼逆向運算求得結果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結果:本題考查算法中的語言,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2)2.【解析】
(1)由得,求出曲線的直角坐標方程.由直線的參數方程消去參數,即求直線的普通方程;(2)將直線的參數方程化為標準式(為參數),代入曲線的直角坐標方程,韋達定理得,點在直線上,則,即可求出的值.【詳解】(1)由可得,即,即,曲線的直角坐標方程為,由直線的參數方程(t為參數),消去得,即直線的普通方程為.(Ⅱ)點的直角坐標為,則點在直線上.將直線的參數方程化為標準式(為參數),代入曲線的直角坐標方程,整理得,直線與曲線交于兩點,,即.設點所對應的參數分別為,由韋達定理可得,.點在直線上,,.本題考查參數方程、極坐標方程和普通方程的互化及應用,屬于中檔題.18.(1);(2).【解析】
(1)根據等比中項性質可構造方程求得,由等差數列通項公式可求得結果;(2)由(1)可得,可知為等比數列,利用分組求和法,結合等差和等比數列求和公式可求得結果.【詳解】(1)成等比數列,,即,,解得:,.(2)由(1)得:,,,數列是首項為,公比為的等比數列,.本題考查等差數列通項公式的求解、分組求和法求解數列的前項和的問題;關鍵是能夠根據通項公式證得數列為等比數列,進而采用分組求和法,結合等差和等比數列求和公式求得結果.19.(Ⅰ),(Ⅱ)見解析【解析】
(1)根據導數的運算法則,求出函數的導數,利用切線方程求出切線的斜率及切點,利用函數在切點處的導數值為曲線切線的斜率及切點也在曲線上,列出方程組,求出,值;(2)首先將不等式轉化為函數,即將不等式右邊式子左移,得,構造函數并判斷其符號,這里應注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線的斜率為,且過點,故即解得,.(2)由(1)知,所以.考慮函數,,則.而,故當時,,所以,即.本題考查了利用導數求切線的斜率,利用函數的導數研究函數的單調性、和最值問題,以及不等式證明問題,考查了分析及解決問題的能力,其中,不等式問題中結合構造函數實現正確轉換為最大值和最小值問題是關鍵.20.(1)(2)9060元【解析】
(1)根據古典概型概率公式和組合數的計算可得所求概率;(2)任選一天,設該天的經濟損失為元,分別求出,,,進而求得數學期望,據此得出該企業一個月經濟損失的數學期望.【詳解】解:(1)設為選取的3天中空氣質量為優的天數,則.(2)任選一天,設該天的經濟損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業一個月的經濟損失的數學期望為(元).本題考查古典概型概率公式和組合數的計算及數學期望,屬于基礎題.21.(1);(2).【解析】
(1)因為點在橢圓上,所以,然后,利用,,得出,進而求解即可(2)設點的坐標為,直線的方程為,直線的方程為,分別聯立方程:和,利用韋達定理,再利用,,即可求出的值【詳解】(1)由橢圓的長半軸長為,得.因為點在橢圓上,所以.又因為,,所以,所以(舍)或.故橢圓的標準方程為.(2)設點的坐標為,直線的方程為,直線的方程為.據得.據題意,得,得,同理,得,所以.又可求,得,,所以.本題考查橢圓標準方程的求解以及聯立方程求定值的問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京經濟管理職業學院《工程制圖及探索者軟件應用》2023-2024學年第二學期期末試卷
- 上海民遠職業技術學院《水工程監理》2023-2024學年第二學期期末試卷
- 山東杏林科技職業學院《文學名作賞析》2023-2024學年第二學期期末試卷
- 天津現代職業技術學院《數字電路與數字邏輯》2023-2024學年第二學期期末試卷
- 瀘州職業技術學院《管理學與工作生活》2023-2024學年第二學期期末試卷
- 廣西信息職業技術學院《藝術社會學》2023-2024學年第二學期期末試卷
- 婁底幼兒師范高等專科學校《視頻廣告編輯》2023-2024學年第二學期期末試卷
- 2025年農業機械租賃合同
- 2025藝術品委托拍賣合同范本
- 2025企業食堂管理合同
- 創造性思維與創新方法智慧樹知到期末考試答案章節答案2024年大連理工大學
- 外科圍手術期營養支持療法
- 知道網課智慧樹《集成電路測試技術基礎(北方工業大學)》章節測試答案
- 人工智能在新聞中的應用
- (高清版)TDT 1015.1-2024 地籍數據庫 第1部分:不動產
- CJT156-2001 溝槽式管接頭
- 民宿承包合同協議書樣本
- 檢修中的應急處置培訓課件
- 烈士陵園智慧管理系統
- 中國特色社會主義期中測試題-2023-2024學年中職高教版
- 學習康復科常見物理治療法課件
評論
0/150
提交評論