湖南省2024屆高三下學期5月階段性考試數學試題_第1頁
湖南省2024屆高三下學期5月階段性考試數學試題_第2頁
湖南省2024屆高三下學期5月階段性考試數學試題_第3頁
湖南省2024屆高三下學期5月階段性考試數學試題_第4頁
湖南省2024屆高三下學期5月階段性考試數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省2023屆高三下學期5月階段性考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數滿足,復數的共軛復數是,則()A.1 B.0 C. D.2.設函數,的定義域都為,且是奇函數,是偶函數,則下列結論正確的是()A.是偶函數 B.是奇函數C.是奇函數 D.是奇函數3.已知,若方程有唯一解,則實數的取值范圍是()A. B.C. D.4.已知,則下列關系正確的是()A. B. C. D.5.港珠澳大橋于2018年10月2刻日正式通車,它是中國境內一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現對大橋某路段上1000輛汽車的行駛速度進行抽樣調查.畫出頻率分布直方圖(如圖),根據直方圖估計在此路段上汽車行駛速度在區間[85,90)的車輛數和行駛速度超過90km/h的頻率分別為()A.300, B.300, C.60, D.60,6.甲乙兩人有三個不同的學習小組,,可以參加,若每人必須參加并且僅能參加一個學習小組,則兩人參加同一個小組的概率為()A.B.C.D.7.已知三棱錐中,為的中點,平面,,,則有下列四個結論:①若為的外心,則;②若為等邊三角形,則;③當時,與平面所成的角的范圍為;④當時,為平面內一動點,若OM∥平面,則在內軌跡的長度為1.其中正確的個數是().A.1 B.1 C.3 D.48.記為數列的前項和數列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.99.3本不同的語文書,2本不同的數學書,從中任意取出2本,取出的書恰好都是數學書的概率是()A. B. C. D.10.已知是虛數單位,若,則()A. B.2 C. D.311.設,,,則()A. B. C. D.12.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,,若函數有3個不同的零點x1,x2,x3(x1<x2<x3),則的取值范圍是_________.14.已知,則__________.15.已知為橢圓上的一個動點,,,設直線和分別與直線交于,兩點,若與的面積相等,則線段的長為______.16.已知數列的各項均為正數,滿足,.,若是等比數列,數列的通項公式_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別為內角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應的面積.(若所選條件出現多種可能,則按計算的第一種可能計分)18.(12分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區,如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設,用關于的函數表示,并求在區間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.19.(12分)2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創新藥研發成了當務之急.為此,某藥企加大了研發投入,市場上治療一類慢性病的特效藥品的研發費用(百萬元)和銷量(萬盒)的統計數據如下:研發費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關系數精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產藥品的三類不同的劑型,,,并對其進行兩次檢測,當第一次檢測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經過兩次檢測后,,三類劑型合格的種類數為,求的數學期望.附:(1)相關系數(2),,,.20.(12分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知直線的參數方程為(為參數),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,,點,求的值.21.(12分)已知,且的解集為.(1)求實數,的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數取值范圍.22.(10分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據復數代數形式的運算法則求出,再根據共軛復數的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數代數形式的運算法則,考查共軛復數的概念,屬于基礎題.2.C【解析】

根據函數奇偶性的性質即可得到結論.【詳解】解:是奇函數,是偶函數,,,,故函數是奇函數,故錯誤,為偶函數,故錯誤,是奇函數,故正確.為偶函數,故錯誤,故選:.【點睛】本題主要考查函數奇偶性的判斷,根據函數奇偶性的定義是解決本題的關鍵.3.B【解析】

求出的表達式,畫出函數圖象,結合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數恒過,,由,,可得,,,若方程有唯一解,則或,即或;當即圖象相切時,根據,,解得舍去),則的范圍是,故選:.【點睛】本題考查函數的零點問題,考查函數方程的轉化思想和數形結合思想,屬于中檔題.4.A【解析】

首先判斷和1的大小關系,再由換底公式和對數函數的單調性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.5.B【解析】

由頻率分布直方圖求出在此路段上汽車行駛速度在區間的頻率即可得到車輛數,同時利用頻率分布直方圖能求行駛速度超過的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區間的頻率為,∴在此路段上汽車行駛速度在區間的車輛數為:,行駛速度超過的頻率為:.故選:B.【點睛】本題考查頻數、頻率的求法,考查頻率分布直方圖的性質等基礎知識,考查運算求解能力,是基礎題.6.A【解析】依題意,基本事件的總數有種,兩個人參加同一個小組,方法數有種,故概率為.7.C【解析】

由線面垂直的性質,結合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質可判斷②錯誤;由線面角的定義和轉化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設與平面所成角為可得,設到平面的距離為由可得即有,當且僅當取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點睛】此題考查立體幾何中與點、線、面位置關系有關的命題的真假判斷,處理這類問題,可以用已知的定理或性質來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.8.A【解析】

先令,找出的關系,再令,得到的關系,從而可求出,然后令,可得,得出數列為等差數列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A【點睛】此題考查的是由數列的遞推式求數列的通項,采用了賦值法,屬于中檔題.9.D【解析】

把5本書編號,然后用列舉法列出所有基本事件.計數后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數學書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數學書的只有一種,∴所求概率為.故選:D.【點睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數計算概率.10.A【解析】

直接將兩邊同時乘以求出復數,再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數的運算及其模的求法,是基礎題.11.A【解析】

先利用換底公式將對數都化為以2為底,利用對數函數單調性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數函數和指數函數的單調性比較大小,屬于基礎題.12.D【解析】

A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先根據題意,求出的解得或,然后求出f(x)的導函數,求其單調性以及最值,在根據題意求出函數有3個不同的零點x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數有3個不同的零點,即+m=0有兩個不同的解,解之得即或因為的導函數,令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數有3個不同的零點,(1)有兩個不同的解,此時有一個解;(2)有兩個不同的解,此時有一個解當有兩個不同的解,此時有一個解,此時,不符合題意;或是不符合題意;所以只能是解得,此時=-m,此時有兩個不同的解,此時有一個解此時,不符合題意;或是不符合題意;所以只能是解得,此時=,綜上:的取值范圍是故答案為【點睛】本題主要考查了函數與導函數的綜合,考查到了函數的零點,導函數的應用,以及數形結合的思想、分類討論的思想,屬于綜合性極強的題目,屬于難題.14.【解析】解:由題意可知:.15.【解析】

先設點坐標,由三角形面積相等得出兩個三角形的邊之間的比例關系,這個比例關系又可用線段上點的坐標表示出來,從而可求得點的橫坐標,代入橢圓方程得縱坐標,然后可得.【詳解】如圖,設,,,由,得,由得,∴,解得,又在橢圓上,∴,,∴.故答案為:.【點睛】本題考查直線與橢圓相交問題,解題時由三角形面積相等得出線段長的比例關系,解題是由把線段長的比例關系用點的橫坐標表示.16.【解析】

利用遞推關系,等比數列的通項公式即可求得結果.【詳解】因為,所以,因為是等比數列,所以數列的公比為1.又,所以當時,有.這說明在已知條件下,可以得到唯一的等比數列,所以,故答案為:.【點睛】該題考查的是有關數列的問題,涉及到的知識點有根據遞推公式求數列的通項公式,屬于簡單題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)①,③,④或②,③,④;(2).【解析】

(1)由①可求得的值,由②可求出角的值,結合題意得出,推出矛盾,可得出①②不能同時成為的條件,由此可得出結論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對應的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因為,且,所以,所以,矛盾.所以不能同時滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因為,所以,即.解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所以,所以的面積.【點睛】本題考查三角形能否成立的判斷,同時也考查了利用正弦定理和余弦定理解三角形,以及三角形面積的計算,要結合三角形已知元素類型合理選擇正弦定理或余弦定理解三角形,考查運算求解能力,屬于中等題.18.(1),最大值公頃;(2)17、25、5、5.【解析】

(1)由余弦定理求出三角形ABC的邊長BC,進而可以求出,,由面積公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表達式求出,。【詳解】(1)由余弦定理得,,所以,,同理可得又,所以,故在區間上的最大值為,近似值為。(2)由(1)知,,,所以,進而,由知,,,故、、、的值分別是17、25、5、5。【點睛】本題主要考查利用余弦定理解三角形以及同角三角函數平方關系的應用,意在考查學生的數學建模以及數學運算能力。19.(1)0.98;可用線性回歸模型擬合.(2)【解析】

(1)根據題目提供的數據求出,代入相關系數公式求出,根據的大小來確定結果;(2)求出藥品的每類劑型經過兩次檢測后合格的概率,發現它們相同,那么經過兩次檢測后,,三類劑型合格的種類數為,服從二項分布,利用二項分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論