廣東省深圳市十校2024屆初中數學畢業考試模擬沖刺卷含解析_第1頁
廣東省深圳市十校2024屆初中數學畢業考試模擬沖刺卷含解析_第2頁
廣東省深圳市十校2024屆初中數學畢業考試模擬沖刺卷含解析_第3頁
廣東省深圳市十校2024屆初中數學畢業考試模擬沖刺卷含解析_第4頁
廣東省深圳市十校2024屆初中數學畢業考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳市十校2024屆初中數學畢業考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,比例規是一種畫圖工具,它由長度相等的兩腳AC和BD交叉構成,利用它可以把線段按一定的比例伸長或縮短.如果把比例規的兩腳合上,使螺絲釘固定在刻度3的地方(即同時使OA=3OC,OB=3OD),然后張開兩腳,使A,B兩個尖端分別在線段a的兩個端點上,當CD=1.8cm時,則AB的長為()A.7.2cm B.5.4cm C.3.6cm D.0.6cm2.關于x的方程x2﹣3x+k=0的一個根是2,則常數k的值為()A.1 B.2 C.﹣1 D.﹣23.若代數式的值為零,則實數x的值為()A.x=0 B.x≠0 C.x=3 D.x≠34.如圖,在矩形ABCD中,AB=,AD=2,以點A為圓心,AD的長為半徑的圓交BC邊于點E,則圖中陰影部分的面積為()A. B. C. D.5.2017年底我國高速公路已開通里程數達13.5萬公里,居世界第一,將數據135000用科學計數法表示正確的是()A.1.35×106 B.1.35×105 C.13.5×104 D.135×1036.一組數據:6,3,4,5,7的平均數和中位數分別是()A.5,5 B.5,6 C.6,5 D.6,67.上周周末放學,小華的媽媽來學校門口接他回家,小華離開教室后不遠便發現把文具盒遺忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并與班主任交流了一下周末計劃才離開,為了不讓媽媽久等,小華快步跑到學校門口,則小華離學校門口的距離y與時間t之間的函數關系的大致圖象是()A. B. C. D.8.某車間有26名工人,每人每天可以生產800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產的螺釘和螺母剛好配套.設安排x名工人生產螺釘,則下面所列方程正確的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x9.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.1210.計算(﹣)﹣1的結果是()A.﹣ B. C.2 D.﹣2二、填空題(共7小題,每小題3分,滿分21分)11.在△ABC中,∠ABC<20°,三邊長分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長為a+c+5b,則翻折11次后,所得圖形的周長為_____________.(結果用含有a,b,c的式子表示)12.某種商品每件進價為10元,調查表明:在某段時間內若以每件x元(10≤x≤20且x為整數)出售,可賣出(20﹣x)件,若使利潤最大,則每件商品的售價應為_____元.13.如圖,在平面直角坐標系中,已知C(1,),△ABC與△DEF位似,原點O是位似中心,要使△DEF的面積是△ABC面積的5倍,則點F的坐標為_____.14.A、B兩地相距20km,甲乙兩人沿同一條路線從A地到B地.甲先出發,勻速行駛,甲出發1小時后乙再出發,乙以2km/h的速度度勻速行駛1小時后提高速度并繼續勻速行駛,結果比甲提前到達.甲、乙兩人離開A地的距離y(km)與時間t(h)的關系如圖所示,則甲出發_____小時后和乙相遇.15.如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規律,經過第2019次運動后,動點P的坐標是_______.16.已知一個正六邊形的邊心距為,則它的半徑為______.17.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進了20米,那么這個物體在水平方向上前進了_____米.三、解答題(共7小題,滿分69分)18.(10分)解不等式組并寫出它的所有整數解.19.(5分)已知二次函數y=x2-4x-5,與y軸的交點為P,與x軸交于A、B兩點.(點B在點A的右側)(1)當y=0時,求x的值.(2)點M(6,m)在二次函數y=x2-4x-5的圖像上,設直線MP與x軸交于點C,求cot∠MCB的值.20.(8分)如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,OA=5,AB與⊙O相切于點B,BP的延長線交直線l于點C.(1)求證:AB=AC;(2)若,求⊙O的半徑.21.(10分)如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別在OA,OC上.(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.22.(10分)如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y=(n≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于點C,點B坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.求該反比例函數和一次函數的解析式;求△AOB的面積;點E是x軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.23.(12分)如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A、點B、點C均落在格點上.(I)計算△ABC的邊AC的長為_____.(II)點P、Q分別為邊AB、AC上的動點,連接PQ、QB.當PQ+QB取得最小值時,請在如圖所示的網格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點P、Q的位置是如何找到的_____(不要求證明).24.(14分)如圖,分別與相切于點,點在上,且,,垂足為.求證:;若的半徑,,求的長

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】【分析】由已知可證△ABO∽CDO,故,即.【詳解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故選B【點睛】本題考核知識點:相似三角形.解題關鍵點:熟記相似三角形的判定和性質.2、B【解析】

根據一元二次方程的解的定義,把x=2代入得4-6+k=0,然后解關于k的方程即可.【詳解】把x=2代入得,4-6+k=0,解得k=2.故答案為:B.【點睛】本題主要考查了一元二次方程的解,掌握一元二次方程的定義,把已知代入方程,列出關于k的新方程,通過解新方程來求k的值是解題的關鍵.3、A【解析】

根據分子為零,且分母不為零解答即可.【詳解】解:∵代數式的值為零,∴x=0,此時分母x-3≠0,符合題意.故選A.【點睛】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為0,②分母的值不為0,這兩個條件缺一不可.4、B【解析】

先利用三角函數求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補法.求陰影面積的主要思路是將不規則圖形面積轉化為規則圖形的面積.5、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:135000=1.35×105故選B.【點睛】此題考查科學記數法表示較大的數.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、A【解析】試題分析:根據平均數的定義列式計算,再根據找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數解答.平均數為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數為:1.故選A.考點:中位數;算術平均數.7、B【解析】分析:根據題意出教室,離門口近,返回教室離門口遠,在教室內距離不變,速快跑距離變化快,可得答案.詳解:根據題意得,函數圖象是距離先變短,再變長,在教室內沒變化,最后迅速變短,B符合題意;

故選B.點睛:本題考查了函數圖象,根據距離的變化描述函數是解題關鍵.8、C【解析】

試題分析:此題等量關系為:2×螺釘總數=螺母總數.據此設未知數列出方程即可【詳解】.故選C.解:設安排x名工人生產螺釘,則(26-x)人生產螺母,由題意得

1000(26-x)=2×800x,故C答案正確,考點:一元一次方程.9、B【解析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關系;3.等腰三角形的性質.10、D【解析】

根據負整數指數冪與正整數指數冪互為倒數,可得答案.【詳解】解:,

故選D.【點睛】本題考查了負整數指數冪,負整數指數冪與正整數指數冪互為倒數.二、填空題(共7小題,每小題3分,滿分21分)11、2a+12b【解析】如圖2,翻折4次時,左側邊長為c,如圖2,翻折5次,左側邊長為a,所以翻折4次后,如圖1,由折疊得:AC=A===,所以圖形的周長為:a+c+5b,因為∠ABC<20°,所以,翻折9次后,所得圖形的周長為:2a+10b,故答案為:2a+10b.12、1【解析】

本題是營銷問題,基本等量關系:利潤=每件利潤×銷售量,每件利潤=每件售價﹣每件進價.再根據所列二次函數求最大值.【詳解】解:設利潤為w元,則w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴當x=1時,二次函數有最大值25,故答案是:1.【點睛】本題考查了二次函數的應用,此題為數學建模題,借助二次函數解決實際問題.13、(,)【解析】

根據相似三角形的性質求出相似比,根據位似變換的性質計算即可.【詳解】解:∵△ABC與△DEF位似,原點O是位似中心,要使△DEF的面積是△ABC面積的5倍,則△DEF的邊長是△ABC邊長的倍,∴點F的坐標為(1×,×),即(,),故答案為:(,).【點睛】本題考查的是位似變換,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或﹣k.14、【解析】

由圖象得出解析式后聯立方程組解答即可.【詳解】由圖象可得:y甲=4t(0≤t≤5);y乙=;由方程組,解得t=.故答案為.【點睛】此題考查一次函數的應用,關鍵是由圖象得出解析式解答.15、(2019,2)【解析】

分析點P的運動規律,找到循環次數即可.【詳解】分析圖象可以發現,點P的運動每4次位置循環一次.每循環一次向右移動四個單位.∴2019=4×504+3當第504循環結束時,點P位置在(2016,0),在此基礎之上運動三次到(2019,2)故答案為(2019,2).【點睛】本題是規律探究題,解題關鍵是找到動點運動過程中,每運動多少次形成一個循環.16、2【解析】試題分析:設正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據三角函數即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關系.解題的關鍵在于利用正多邊形的半徑、邊心距構造直角三角形并利用解直角三角形的知識求解.17、1.【解析】

直接根據題意得出直角邊的比值,即可表示出各邊長進而得出答案.【詳解】如圖所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴設AC=4x,則BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故這個物體在水平方向上前進了1m.故答案為:1.【點睛】此題主要考查坡度的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關系是.三、解答題(共7小題,滿分69分)18、不等式組的整數解有﹣1、0、1.【解析】

先解不等式組,求得不等式組的解集,再確定不等式組的整數解即可.【詳解】,解不等式①可得,x>-2;解不等式②可得,x≤1;∴不等式組的解集為:﹣2<x≤1,∴不等式組的整數解有﹣1、0、1.【點睛】本題考查了解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則求不等式組的解集是解答本題的關鍵.19、(1),;(2)【解析】

(1)當y=0,則x2-4x-5=0,解方程即可得到x的值.(2)由題意易求M,P點坐標,再求出MP的直線方程,可得cot∠MCB.【詳解】(1)把代入函數解析式得,即,解得:,.(2)把代入得,即得,∵二次函數,與軸的交點為,∴點坐標為.設直線的解析式為,代入,得解得,∴,∴點坐標為,在中,又∵∴.【點睛】本題考查的知識點是拋物線與x軸的交點,二次函數的性質,解題的關鍵是熟練的掌握拋物線與x軸的交點,二次函數的性質.20、(1)證明見解析;(2)1.【解析】

(1)由同圓半徑相等和對頂角相等得∠OBP=∠APC,由圓的切線性質和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,則∠ABP=∠ACB,根據等角對等邊得AB=AC;(2)設⊙O的半徑為r,分別在Rt△AOB和Rt△ACP中根據勾股定理列等式,并根據AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.【詳解】解:(1)連接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB與⊙O相切于點B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)設⊙O的半徑為r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,則⊙O的半徑為1.【點睛】本題考查了圓的切線的性質,圓的切線垂直于經過切點的半徑;并利用勾股定理列等式,求圓的半徑;此類題的一般做法是:若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系;簡記作:見切點,連半徑,見垂直.21、(1)見解析;(2)見解析.【解析】試題分析:(1)選取①②,利用ASA判定△BEO≌△DFO;也可選取②③,利用AAS判定△BEO≌△DFO;還可選取①③,利用SAS判定△BEO≌△DFO;(2)根據△BEO≌△DFO可得EO=FO,BO=DO,再根據等式的性質可得AO=CO,根據兩條對角線互相平分的四邊形是平行四邊形可得結論.試題解析:證明:(1)選取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四邊形ABCD是平行四邊形.點睛:此題主要考查了平行四邊形的判定,以及全等三角形的判定,關鍵是掌握兩條對角線互相平分的四邊形是平行四邊形.22、(1)y=﹣,y=﹣x+2;(2)6;(3)當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【解析】

(1)利用待定系數法,即可得到反比例函數和一次函數的解析式;(2)利用一次函數解析式求得C(4,0),即OC=4,即可得出△AOB的面積=×4×3=6;(3)分類討論:當AO為等腰三角形腰與底時,求出點E坐標即可.【詳解】(1)如圖,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考點:n=3×(﹣2)=﹣6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論