廣東省韶關市樂昌縣市級名校2023-2024學年中考試題猜想數學試卷含解析_第1頁
廣東省韶關市樂昌縣市級名校2023-2024學年中考試題猜想數學試卷含解析_第2頁
廣東省韶關市樂昌縣市級名校2023-2024學年中考試題猜想數學試卷含解析_第3頁
廣東省韶關市樂昌縣市級名校2023-2024學年中考試題猜想數學試卷含解析_第4頁
廣東省韶關市樂昌縣市級名校2023-2024學年中考試題猜想數學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省韶關市樂昌縣市級名校2023-2024學年中考試題猜想數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列說法正確的是()A.﹣3是相反數 B.3與﹣3互為相反數C.3與互為相反數 D.3與﹣互為相反數2.某公司第4月份投入1000萬元科研經費,計劃6月份投入科研經費比4月多500萬元.設該公司第5、6個月投放科研經費的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+5003.|﹣3|的值是()A.3 B. C.﹣3 D.﹣4.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm25.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.6.對于反比例函數y=(k≠0),下列所給的四個結論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數的圖象關于直線y=﹣x成軸對稱7.在代數式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠08.已知函數,則使y=k成立的x值恰好有三個,則k的值為()A.0 B.1 C.2 D.39.下列運算正確的是()A.3a2﹣2a2=1 B.a2?a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b210.-5的相反數是()A.5 B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知線段AB=10cm,C為線段AB的黃金分割點(AC>BC),則BC=_____.12.關于的一元二次方程有兩個不相等的實數根,則實數的取值范圍是________.13.計算:6﹣=_____14.為了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,則2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.請你仿照以上方法計算1+5+52+53+…+52017的值是_____.15.雙察下列等式:,,,…則第n個等式為_____.(用含n的式子表示)16.股市規定:股票每天的漲、跌幅均不超過10%,即當漲了原價的10%后,便不能再漲,叫做漲停;當跌了原價的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后兩天時間又漲回到原價,若這兩天此股票股價的平均增長率為x,則x滿足的方程是_____.17.已知拋物線y=ax2+bx+c=0(a≠0)與軸交于,兩點,若點的坐標為,線段的長為8,則拋物線的對稱軸為直線________________.三、解答題(共7小題,滿分69分)18.(10分)如圖,某校準備給長12米,寬8米的矩形室內場地進行地面裝飾,現將其劃分為區域Ⅰ(菱形),區域Ⅱ(4個全等的直角三角形),剩余空白部分記為區域Ⅲ;點為矩形和菱形的對稱中心,,,,為了美觀,要求區域Ⅱ的面積不超過矩形面積的,若設米.甲乙丙單價(元/米2)(1)當時,求區域Ⅱ的面積.計劃在區域Ⅰ,Ⅱ分別鋪設甲,乙兩款不同的深色瓷磚,區域Ⅲ鋪設丙款白色瓷磚,①在相同光照條件下,當場地內白色區域的面積越大,室內光線亮度越好.當為多少時,室內光線亮度最好,并求此時白色區域的面積.②三種瓷磚的單價列表如下,均為正整數,若當米時,購買三款瓷磚的總費用最少,且最少費用為7200元,此時__________,__________.19.(5分)解分式方程:-1=20.(8分)如圖,在平面直角坐標系xOy中,正比例函數y=x的圖象與一次函數y=kx-k的圖象的交點坐標為A(m,2).(1)求m的值和一次函數的解析式;(2)設一次函數y=kx-k的圖象與y軸交于點B,求△AOB的面積;(3)直接寫出使函數y=kx-k的值大于函數y=x的值的自變量x的取值范圍.21.(10分)如圖,在△ABC中,點D,E分別在邊AB,AC上,∠AED=∠B,射線AG分別交線段DE,BC于點F,G,且.求證:△ADF∽△ACG;若,求的值.22.(10分)如圖,在平面直角坐標系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以OA,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發,其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標為,直線OB的函數表達式為;(2)記△OMP的面積為S,求S與t的函數關系式;并求t為何值時,S有最大值,并求出最大值.23.(12分)拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.(1)如圖1,若A(-1,0),B(3,0),①求拋物線的解析式;②P為拋物線上一點,連接AC,PC,若∠PCO=3∠ACO,求點P的橫坐標;(2)如圖2,D為x軸下方拋物線上一點,連DA,DB,若∠BDA+2∠BAD=90°,求點D的縱坐標.24.(14分)學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現狀,對該班部分學生進行調查,把調查結果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調查結果繪制成兩幅不完整的統計圖(如圖1,2).請根據統計圖解答下列問題:本次調查中,王老師一共調查了名學生;將條形統計圖補充完整;為了共同進步,王老師從被調查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

符號不同,絕對值相等的兩個數互為相反數,可據此來判斷各選項是否正確.【詳解】A、3和-3互為相反數,錯誤;B、3與-3互為相反數,正確;C、3與互為倒數,錯誤;D、3與-互為負倒數,錯誤;故選B.【點睛】此題考查相反數問題,正確理解相反數的定義是解答此題的關鍵.2、A【解析】

設該公司第5、6個月投放科研經費的月平均增長率為x,5月份投放科研經費為1000(1+x),6月份投放科研經費為1000(1+x)(1+x),即可得答案.【詳解】設該公司第5、6個月投放科研經費的月平均增長率為x,則6月份投放科研經費1000(1+x)2=1000+500,故選A.【點睛】考查一元二次方程的應用,求平均變化率的方法為:若設變化前的量為a,變化后的量為b,平均變化率為x,則經過兩次變化后的數量關系為a(1±x)2=b.3、A【解析】分析:根據絕對值的定義回答即可.詳解:負數的絕對值等于它的相反數,故選A.點睛:考查絕對值,非負數的絕對值等于它本身,負數的絕對值等于它的相反數.4、C【解析】圓錐的側面積=底面周長×母線長÷2,把相應數值代入,圓錐的側面積=2π×2×5÷2=10π.故答案為C5、C【解析】

結合圓錐的平面展開圖的特征,側面展開是一個扇形,底面展開是一個圓.【詳解】解:圓錐的展開圖是由一個扇形和一個圓形組成的圖形.故選C.【點睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關鍵.注意圓錐的平面展開圖是一個扇形和一個圓組成.6、D【解析】分析:根據反比例函數的性質一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減小;故本選項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數的性質,解題的關鍵是熟練掌握反比例函數的性質,靈活運用所學知識解決問題,屬于中考常考題型.7、D【解析】

根據二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點睛】本題考查二次根式有意義的條件,解題的關鍵是熟練運用二次根式有意義的條件,本題屬于基礎題型.8、D【解析】

解:如圖:利用頂點式及取值范圍,可畫出函數圖象會發現:當x=3時,y=k成立的x值恰好有三個.故選:D.9、D【解析】

根據合并同類項法則,可知3a2﹣2a2=a2,故不正確;根據同底數冪相乘,可知a2?a3=a5,故不正確;根據完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正確;根據完全平方公式,可知(a+b)2=a2+2ab+b2,正確.故選D.【詳解】請在此輸入詳解!10、A【解析】由相反數的定義:“只有符號不同的兩個數互為相反數”可知-5的相反數是5.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、(15-55).【解析】試題解析:∵C為線段AB的黃金分割點(AC>BC),∴AC=5-12AB=AC=5-1∴BC=AB-AC=10-(55-5)=(15-55)cm.考點:黃金分割.12、b<9【解析】

由方程有兩個不相等的實數根結合根的判別式,可得出,解之即可得出實數b的取值范圍.【詳解】解:方程有兩個不相等的實數根,

解得:.【點睛】本題考查的知識點是根的判別式,解題關鍵是牢記“當時,方程有兩個不相等的實數根”.13、3【解析】

按照二次根式的運算法則進行運算即可.【詳解】【點睛】本題考查的知識點是二次根式的運算,解題關鍵是注意化簡算式.14、【解析】

根據上面的方法,可以令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,再相減算出S的值即可.【詳解】解:令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,則S=,故答案為:.【點睛】此題參照例子,采用類比的方法就可以解決,注意這里由于都是5的次方,所以要用5S來達到抵消的目的.15、=【解析】

探究規律后,寫出第n個等式即可求解.【詳解】解:…則第n個等式為故答案為:【點睛】本題主要考查二次根式的應用,找到規律是解題的關鍵.16、.【解析】

股票一次跌停就跌到原來價格的90%,再從90%的基礎上漲到原來的價格,且漲幅只能≤10%,設這兩天此股票股價的平均增長率為x,每天相對于前一天就上漲到1+x,由此列出方程解答即可.【詳解】設這兩天此股票股價的平均增長率為x,由題意得(1﹣10%)(1+x)2=1.故答案為:(1﹣10%)(1+x)2=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,關鍵是掌握平均變化率的方法,若設變化前的量為,變化后的量為,平均變化率為,則經過兩次變化后的數量關系為17、或x=-1【解析】

由點A的坐標及AB的長度可得出點B的坐標,由拋物線的對稱性可求出拋物線的對稱軸.【詳解】∵點A的坐標為(-2,0),線段AB的長為8,∴點B的坐標為(1,0)或(-10,0).∵拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,∴拋物線的對稱軸為直線x==2或x==-1.故答案為x=2或x=-1.【點睛】本題考查了拋物線與x軸的交點以及二次函數的性質,由拋物線與x軸的交點坐標找出拋物線的對稱軸是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)8m2;(2)68m2;(3)40,8【解析】

(1)根據中心對稱圖形性質和,,,可得,即可解當時,4個全等直角三角形的面積;(2)白色區域面積即是矩形面積減去一二部分的面積,分別用含x的代數式表示出菱形和四個全等直角三角形的面積,列出含有x的解析式表示白色區域面積,并化成頂點式,根據,,,求出自變量的取值范圍,再根據二次函數的增減性即可解答;(3)計算出x=2時各部分面積以及用含m、n的代數式表示出費用,因為m,n均為正整數,解得m=40,n=8.【詳解】(1)∵為長方形和菱形的對稱中心,,∴∵,,∴∴當時,,(2)∵,∴-,∵,,∴解不等式組得,∵,結合圖像,當時,隨的增大而減小.∴當時,取得最大值為(3)∵當時,SⅠ=4x2=16m2,=12m2,=68m2,總費用:16×2m+12×5n+68×2m=7200,化簡得:5n+14m=600,因為m,n均為正整數,解得m=40,n=8.【點睛】本題考查中心對稱圖形性質,菱形、直角三角形的面積計算,二次函數的最值問題,解題關鍵是用含x的二次函數解析式表示出白色區面積.19、7【解析】

根據分式的性質及等式的性質進行去分母,去括號,移項,合并同類項,未知數系數化為1即可.【詳解】-1=3-(x-3)=-13-x+3=-1x=7【點睛】此題主要考查分式方程的求解,解題的關鍵是正確去掉分母.20、(1)y=1x﹣1(1)1(3)x>1【解析】試題分析:(1)先把A(m,1)代入正比例函數解析式可計算出m=1,然后把A(1,1)代入y=kx﹣k計算出k的值,從而得到一次函數解析式為y=1x﹣1;(1)先確定B點坐標,然后根據三角形面積公式計算;(3)觀察函數圖象得到當x>1時,直線y=kx﹣k都在y=x的上方,即函數y=kx﹣k的值大于函數y=x的值.試題解析:(1)把A(m,1)代入y=x得m=1,則點A的坐標為(1,1),把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,所以一次函數解析式為y=1x﹣1;(1)把x=0代入y=1x﹣1得y=﹣1,則B點坐標為(0,﹣1),所以S△AOB=×1×1=1;(3)自變量x的取值范圍是x>1.考點:兩條直線相交或平行問題21、(1)證明見解析;(2)1.【解析】(1)欲證明△ADF∽△ACG,由可知,只要證明∠ADF=∠C即可.(2)利用相似三角形的性質得到,由此即可證明.【解答】(1)證明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.22、(1),;(2),1,1.【解析】

(1)根據四邊形OABC為矩形即可求出點B坐標,設直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點的坐標為,表達出△OMP的面積即可,利用二次函數的性質求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點B,設直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點的坐標為,∴當時,有最大值1.【點睛】本題考查了二次函數與幾何動態問題,解題的關鍵是根據題意表達出點的坐標,利用幾何知識列出函數關系式.23、(1)①y=-x2+2x+3②(2)-1【解析】分析:(1)①把A、B的坐標代入解析式,解方程組即可得到結論;②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,,即可得出AI、CI的長,進而得到.設EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標,進而求出CE的直線解析式,聯立解方程組即可得到結論;(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對應邊成比例得到,即,整理得.令y=0,得:.故,從而得到.由,得到,解方程即可得到結論.詳解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴②延長CP交x軸于點E,在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論