




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
基礎版(通用)
2022-2023學年小升初數學精講精練專題匯編講義
第20講圖形的變換
知識精講
知識點一:軸對稱圖形
1.將圖形沿著一條直線對折,如果直線兩側部分能夠完全重合,這樣的圖形叫軸
對稱圖形,折痕所在的這條直線叫作對稱軸
畫對稱軸的方法:用對折的方法尋找對稱軸,對稱軸要畫成虛線,兩端栗畫出圖形
外面
2.畫軸對稱圖形的方法:
⑴找出所給圖形的關鍵點
⑵數出或量出圖形關鍵點到對稱軸的距離
⑶在對稱軸的另一側找出關鍵點的對稱點
(4)對照所給圖形順次連接各點
知識點二:平移與旋轉
1.圖形的平移
平移的意義物體在同一平面內沿著直線運動,這種運動現象叫作平移。
平移的特點物體或圖形平移后,它們的形狀、大小、方向都不改變。
(1)找出圖形的關鍵點或關鍵線段作參照點或參照線段。
畫平移圖形的方法(2)按指定方向和格數把參照點或參照線段平移到新位置。
(3)把各點按照原圖順序連接起來。
2.圖形的旋轉
旋轉的意義物體或圖形繞著一個點或一個軸運動的現象叫作旋轉
旋轉的方向順時針方向和逆時針方向
旋轉的三個關鍵點旋轉中心、旋轉方向和旋轉角度
旋轉的性質對應點與旋轉中心所連線段的夾角等于旋轉角,對應點到旋轉中心的
距離相等。
旋轉的特征圖形旋轉后,形狀、大小都沒有發生變化,只是位置變了。
(1)找出圖形的關鍵點或關鍵線段,用三角尺作出關鍵線段的垂線。
簡單圖形旋轉90°
(2)從旋轉中心開始,在所作垂線上畫出與原線段相等的長度。
的畫法
(3)按照原圖形順次連接所畫的對應點
知識點三:放大與縮小
1.圖形的放大或縮小(各邊按相同的比放大或縮小)所得到的圖形與原圖形相比,
形狀相同,大小不同。
2.在方格紙上畫出按一定的比將圖形放大或縮小后的圖形的方法:一看:看原圖
形每邊各占幾格;二算:按給定的比計算圖形放大或縮小后得到的圖形的邊各占
幾格;三畫,按計算出的邊長畫出原圖形放大或縮小的圖形。
提高達標百分練
一.選擇題(共5小題,滿分5分,每小題1分)
1.(1分)(2023*海淀區模擬)一個圖形繞某點逆時針旋轉90°后,所得的圖形與原
來的圖形相比較,變了,沒變,正確答案是()。
A.位置變了,太小、形狀不變
B.大小變了,位置、形狀不變
C.形狀變了.位置、大小不變
2.(1分)(2022?紅谷灘區)有一個邊長為1曲的等邊三角形,小明將三角形沿水平線
翻滾(如下圖所示)。點4從圖①中的位置到圖③中的位置,它所經過的路線總長度
是()dm。
BAC
3.(1分)(2022?海東市)鐘面上從下午3:00到下午3:15,分針()
A.順時針旋轉90°B.逆時針旋轉90°
C.順時針旋轉180°
4.(1分)(2022?揚州)一個正方形的面積是100平方厘米,把這個正方形按1:2的
比縮小。變化后圖形的面積是()平方厘米。
A.50B.200C.25D.400
5.(1分)(2023?海淀區模擬)從放有4個紅珠子和1個綠珠子的口袋中隨意摸出一個
珠子來。正確的說法是()
A.偶爾能摸出綠珠子來
B.可能摸出白珠子來
C.經常能摸出黃珠子來
D.摸到紅珠子和綠珠子的可能性一樣大
二.填空題(共8小題,滿分16分,每小題2分)
6.(2分)(2022秋?渭濱區期末)正方形有條對稱軸,圓有條對稱軸.
7.(2分)(2022.龍川縣)圖是一個長方體的展開圖,每個小正方形的邊長是1加,這
個長方體的體積是c彘如果將這幅圖按3:1的比放大后,用新的圖形做成
一個長方體,這個長方體的表面積是cmo
8.(2分)(2022.黃驊市)一個長6cm,寬4加的長方形按2:1放大,得到的圖形面
積是cm2,放大前后面積比是o
9.(2分)(2022?寶安區)(如圖)圖是將圖4按2:1放大后的圖形,圖是
10.(2分)(2022.鄭縣)如圖,桌上有一張梯形的紙片,折疊后,得到圖形所覆蓋桌
面的面積是原來梯形面積的亙。已知陰影部分的面積和為8平方厘米,原梯形的面積
5
是_______平方厘米。
11.(2分)(2022.長沙)一個長6M,寬4c加的長方形按5:1放大,得到的圖形面積
是cmo
12.(2分)(2021?潮州)一個長方形長2.8厘米,寬1.2厘米,把它按2:1放大,得
到的圖形周長厘米,面積是原來的倍。
13.(2分)(2022.松陽縣)三角形4成?是邊長為5厘米的等邊三角形,將這個三角形
沿帆折疊(如圖),陰影部分的周長是厘米。
三.判斷題(共5小題,滿分5分,每小題1分)
14.(1分)(2022-璧山區)一個面積為15c4的長方形,把它的各邊放大到原來的2
倍,放大后的長方形面積是30c方。(判斷對錯)
15.(1分)(2022?安新縣)長方形、正方形、平行四邊形、圓形、等腰梯形都是軸對
稱圖形。(判斷對錯)
16.(1分)(2022.武安市)如果一個圓的半徑按2:1放大,那么這個圓的周長擴大到
原來的2倍。(判斷對錯)
17.(1分)(2022?阜平縣)電風扇扇葉的轉動和車輪的滾動都屬于旋轉。(判
斷對錯)
18.(1分)(2022秋?禹城市期末)任何一個圖形通過平移,都可以和原圖形組成軸對
稱圖形..(判斷對錯)
四.操作題(共8小題,滿分47分)
19.(6分)(2023*鐵山區模擬)(1)把箭頭圖先向下平移5格,再向右平移4格.
(2)把小旗圖繞點4按順時針方向旋轉90°.
(3)把三角形繞點6按逆時針方向旋轉90°.
20.(6分)(2022秋?陵城區期末)請你當當小設計師,用平移、旋轉、對稱的知識構
造圖形。
(1)畫出圖①先向下平移一格,再向右平移6格后的圖形。
(2)畫出圖②以虛線為對稱軸的軸對稱圖形。
(3)要想得到一個完整的圖形,還需要將原圖②繞。點時針旋
轉°O
21.(6分)(2022.洋縣)①畫出圖形4的另一半,使它成為軸對稱圖形。
②畫出圖形8繞。點順時針旋轉90°得到的圖形。
③在圖中畫出三角形2:1的縮小后的圖形。
(1)將三角形4向右平移3小格,再向下平移3小格,得到三角形8。
(2)將三角形/按要求3:1放大,得到三角形C。
23.(5分)(2022?禪城區)按要求畫圖。
(1)將梯形向右平移4格;(2)將三角形按1:2縮小。分別畫出平移和縮小后的
圖形。
(1)按1:2的比縮小長方形4畫出縮小后的圖形。縮小后的長方形與原來長方形
的面積比是O
(2)圖形6繞。點順時針旋轉90°得到圖形C,請畫出圖形C。
(3)將圖形。向右平移4格得到圖形。畫出圖形以
(2)畫出把長方形繞點4順時針旋轉90°后的圖形。
(3)畫出軸對稱圖形的另一半。
26.(6分)(2022?梅縣區)畫一畫。
(1)將長方形縮小,使縮小后的圖形與原圖形對應邊的比是1:2(使。點在0,上)。
(2)將原長方形繞點。順時針旋轉90°,再把旋轉后的圖形向右平移3格(畫出最
后圖形)。
(3)以虛線為對稱軸,畫出圖形4的另一半,使它成為軸對稱圖形。
五.解答題(共4小題,滿分27分)
27.(6分)(2022*管城區)按要求畫一畫,并完成填空。
(1)畫出三角形力如繞點。順時針旋轉90°后的圖形。點6旋轉后的位置用數對表
示是()o
(2)把三角形40B按2:1的比畫出放大后的圖形,放大后三角形的面積是原來
的O
28.(6分)(2022.濟南)按要求完成操作。
(1)請用數對表示圖中點。的位置:0(,)
29.(6分)(2023*海淀區模擬)(1)左上圖是軸對稱圖形的一半,請你把它畫完整.
(2)把梯形繞點/順時針旋轉90°.
(1)工程隊要在點4實施一個爆破作業,爆破中心在點4,離爆破中心300米范圍
內都是危險區域.請你畫出恰當的圖形來表示這個危險區域,并涂上陰影(用斜紋線)。
(2)這個平面圖的比例尺改為數值比例尺應該是o
(3)一艘軍艦在點4正南方400米處,請在圖上標記出來,并寫上“軍艦”字樣,
軍艦的位置用數對表示為
(4)一艘漁船在點4南偏西30°方向,同時也剛好位于軍艦的正西方,請在圖上標
出方位角度和漁船的位置,并寫上“漁船”字樣.
(5)圖中三角形表示的是一個大型鉆井平臺,爆破作業后,這個平臺將向下平移4
、旋轉后的圖形.
基礎版(通用)
2022-2023學年小升初數學精講精練專題匯編講義
第20講圖形的變換
知識精講
知識點一:軸對稱圖形
1.將圖形沿著一條直線對折,如果直線兩側部分能夠完全重合,這樣的圖形叫軸
對稱圖形,折痕所在的這條直線叫作對稱軸
畫對稱軸的方法:用對折的方法尋找對稱軸,對稱軸要畫成虛線,兩端栗畫出圖形
外面
2.畫軸對稱圖形的方法:
⑴找出所給圖形的關鍵點
⑵數出或量出圖形關鍵點到對稱軸的距離
⑶在對稱軸的另一側找出關鍵點的對稱點
(4)對照所給圖形順次連接各點
知識點二:平移與旋轉
1.圖形的平移
平移的意義物體在同一平面內沿著直線運動,這種運動現象叫作平移。
平移的特點物體或圖形平移后,它們的形狀、大小、方向都不改變。
(1)找出圖形的關鍵點或關鍵線段作參照點或參照線段。
畫平移圖形的方法(2)按指定方向和格數把參照點或參照線段平移到新位置。
(3)把各點按照原圖順序連接起來。
2.圖形的旋轉
旋轉的意義物體或圖形繞著一個點或一個軸運動的現象叫作旋轉
旋轉的方向順時針方向和逆時針方向
旋轉的三個關鍵點旋轉中心、旋轉方向和旋轉角度
對應點與旋轉中心所連線段的夾角等于旋轉角,對應點到旋轉中心的
旋轉的性質
距離相等。
旋轉的特征圖形旋轉后,形狀、大小都沒有發生變化,只是位置變了。
(1)找出圖形的關鍵點或關鍵線段,用三角尺作出關鍵線段的垂線。
簡單圖形旋轉90°
(2)從旋轉中心開始,在所作垂線上畫出與原線段相等的長度。
的畫法
(3)按照原圖形順次連接所畫的對應點
知識點三:放大與縮小
1.圖形的放大或縮小(各邊按相同的比放大或縮小)所得到的圖形與原圖形相比,
形狀相同,大小不同。
2.在方格紙上畫出按一定的比將圖形放大或縮小后的圖形的方法:一看:看原圖
形每邊各占幾格;二算:按給定的比計算圖形放大或縮小后得到的圖形的邊各占
幾格;三畫,按計算出的邊長畫出原圖形放大或縮小的圖形。
提高達標百分練
—.選擇題(共5小題,滿分5分,每小題1分)
1.(1分)(2023?海淀區模擬)一個圖形繞某點逆時針旋轉90°后,所得的圖形與原
來的圖形相比較,變了,沒變,正確答案是()o
A.位置變了,太小、形狀不變
B.大小變了,位置、形狀不變
C.形狀變了.位置、大小不變
【思路點撥】在平面內,將一個圖形繞一點按某個方向轉動一個角度,這樣的運動叫
作圖形的旋轉,旋轉前后圖形的大小和形狀沒有改變,只是圖形的位置發生變化。
【規范解答】解:一個圖形繞某點逆時針旋轉90°后,所得的圖形與原來的圖形相
比較,旋轉前后圖形的大小和形狀沒有改變,只是圖形的位置發生變化。
故選:4
【考點評析】解答此題的關鍵是:應明確旋轉的意義,并能靈活運用其意義進行解決
問題。
2.(1分)(2022?紅谷灘區)有一個邊長為1曲的等邊三角形,小明將三角形沿水平線
翻滾(如下圖所示)。點4從圖①中的位置到圖③中的位置,它所經過的路線總長度
是()dm。
BAC
ACBA
A.—nB.—nC.nD.2n
33
【思路點撥】根據題目中的圖片,我們可以確定/點每滾動一次,力點運行的軌跡是
以旋轉點為圓心,以半徑是1曲,圓心角是120度的圓弧;根據圓的周長=2nr,圖
中的4點共移動了二次,所以列式為&1X2XnX1X2,計算即可解答本題。
360
【規范解答】解:根據題意,4點滾動一次,運行軌跡是以旋轉點為圓心,以半徑1如,
圓心角是120度圓弧,點4從圖①中的位置到圖③中的位置,圖中4點共移動了二次。
J"X2XnX1X2
360
=Zx2n
3
=ln
3
答:經過的路線總長度是9n。
3
故選:入
【考點評析】這道題主要考查學生圖形的旋轉的知識點,牢記旋轉的特點。
3.(1分)(2022?海東市)鐘面上從下午3:00到下午3:15,分針()
A.順時針旋轉90°B.逆時針旋轉90°
C.順時針旋轉180°
【思路點撥】即3時15分-3時=15分,分針走1大格是5分鐘,15分鐘是3大格,
鐘面上12個數字把鐘面平均分成12份,每份所對應的圓心角是360°4-12=30°,
即分針每走1大格,要轉動30°,據此解答即可。
【規范解答】解:3X30°=90°
答:鐘面上從下午3:00到下午3:15,分針順時針旋轉90°□
故選:4
【考點評析】兩個關鍵:一是分針轉動了幾大格;二是鐘面上指針轉動1大格轉動的
度數。
4.(1分)(2022?揚州)一個正方形的面積是100平方厘米,把這個正方形按1:2的
比縮小。變化后圖形的面積是()平方厘米。
A.50B.200C.25D.400
【思路點撥】正方形面積=邊長義邊長,原來正方形的面積=100=10X10,原正方
形的邊長是10厘米。縮小是把正方形的每條邊都縮小到原來的工,就是把原來正方
2
形的邊長10厘米縮小為(10X1)厘米。變化后的面積即可求。
2
【規范解答】解:100=10X10
(10X-1)X(10X-1)
22
=5X5
=25(平方厘米)
故選:Co
【考點評析】熟悉正方形面積計算公式及圖形縮小的意義是解決本題的關鍵。
5.(1分)(2023?海淀區模擬)從放有4個紅珠子和1個綠珠子的口袋中隨意摸出一個
珠子來。正確的說法是()
A.偶爾能摸出綠珠子來
B.可能摸出白珠子來
C.經常能摸出黃珠子來
D,摸到紅珠子和綠珠子的可能性一樣大
【思路點撥】從放有4個紅珠子和1個綠珠子的口袋中隨意摸出一個珠子來,可能是
紅珠子,可能是綠珠子;
哪種顏色的珠子的數量多,摸到哪種顏色的珠子的可能性就大,據此解答。
【規范解答】解:4偶爾能摸出綠珠子來,原題說法正確,故符合題意;
8.不可能摸出白珠子來,原題說法錯誤,故不符合題意;
C不可能摸出黃珠子來,原題說法錯誤,故不符合題意;
〃4>2,所以摸到紅珠子的可能性大于摸到綠珠子的可能性,原題說法錯誤,故不符
合題意。
故選:4
【考點評析】在不需要計算可能性大小的準確值時,可以根據各種顏色的珠子的數量
的多少直接判斷可能性的大小。
二.填空題(共8小題,滿分16分,每小題2分)
6.(2分)(2022秋?渭濱區期末)正方形有4條對稱軸,圓有無數條對稱軸.
【思路點撥】依據軸對稱圖形的概念,即在平面內,如果一個圖形沿一條直線折疊,
直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸,
從而可以作出正確選擇.
【規范解答】解:兩組對邊中點連線所在的直線以及兩條對角線所在的直線就是其對
稱軸,如下圖:
正方形有四條對稱軸;
圓的直徑所在的直線都是圓的對稱軸,圓有無數條直徑,就用無數條對稱軸.
故答案為:4,無數.
【考點評析】此題考查了利用軸對稱圖形的定義,確定圖形對稱軸條數的方法.
7.(2分)(2022.龍川縣)圖是一個長方體的展開圖,每個小正方形的邊長是1切,這
個長方體的體積是4c/。如果將這幅圖按3:1的比放大后,用新的圖形做成一
個長方體,這個長方體的表面積是144cmo
【思路點撥】用這個長方體展開圖做成的長方體的長、寬、高分別是2厘米、2厘米、
1厘米,根據長方體的體積計算公式“即可求出這個長方體的體積;如果將
這幅圖按3:1的比放大后,長方體的長、寬、高分別是(2X3)厘米、(2X3)厘米、
(1X3)厘米,根據長方體的表面積計算公式“S=2(a加6加a6)”即可求出放大后
長方體的表面積。
【規范解答】解:2X2X1=4(cm)
2X3=6(cnf)
2X3=6(cm)
1X3=3(cm)
(6X3+6X3+6X6)X2
=(18+18+36)X2
=72X2
=144(cm)
答:這個長方體的體積是4c/。按3:1的比放大后,用新的圖形做成一個長方體,
這個長方體的表面積是144c/。
故答案為:4,144?
【考點評析】此題考查的知識點:圖形放大的意義、長方體體積的計算、長方體表面
積的計算。
8.(2分)(2022.黃驊市)一個長6cm,寬4期的長方形按2:1放大,得到的圖形面
積是96c肝,放大前后面積比是1:4o
【思路點撥】根據圖形放大與縮小的意義,把一個長6c叫寬4物的長方形按2:1
放大后,其長是12c叫寬是8c勿,面積是12X8=96Cem'),然后計算放大前后面積
比即可。
【規范解答】解:把一個長6的,寬4cm的長方形按2:1放大后,
長:6X2=12(cm)
寬:4X2=8(cni)
面積:12X8=96{cm')
放大前面積:6X4=24(c濟)
放大前后面積比是:24:96=1:4
故答案為:96;1:4?
【考點評析】此題是考查圖形放大與縮小的意義,圖形放大或縮小的倍數是指對應邊
放大或縮小的倍數,其面積是這個倍數的平方倍。
9.(2分)(2022.寶安區)(如圖)圖D是將圖4按2:1放大后的圖形,圖_C
【思路點撥】把一個圖形按照2:1放大,就是把這個圖形的各條邊長按照2:1進行
放大,一般只要確定這個圖形的長與高的長度比即可。觀察圖形,先找出另外三個圖
形的長與高的長度,再求出它們與原圖形對對應邊的比,即可判斷選擇。
【規范解答】解:圖〃是將圖力按2:1放大后的圖形,圖。是將圖/按1:2縮小后
的圖形。
故答案為:D,C。
【考點評析】本題主要考查圖形的放大與縮小的意義。注意放大或縮小后的圖形的邊
長:原圖的對應邊長=放大或縮小的比。
10.(2分)(2022.郊縣)如圖,桌上有一張梯形的紙片,折疊后,得到圖形所覆蓋桌
面的面積是原來梯形面積的旦。已知陰影部分的面積和為8平方厘米,原梯形的面積
5
是40平方厘米。
【思路點撥】梯形的紙片折疊后,得到圖形所覆蓋桌面的面積是原來梯形面積的3,
5
則折疊后空白部分的面積是梯形面積的(1--再根據陰影部分的面積,求原梯形
5
的面積。
【規范解答】解:折疊后得到圖形所覆蓋桌面的面積是原來梯形面積的旦,
5
則陰影部分占原梯形的面積的1-3=2,
55
所以原梯形的面積是:
84-(1-2x2)
5
=84-(1-1)
5
=84-1
5
=40(平方厘米)
答:原梯形的面積是40平方厘米。
故答案為:40o
【考點評析】本題主要考查圖形的折疊問題,關鍵是根據原梯形和折疊后圖形的面積
的關系計算。
11.(2分)(2022.長沙)一個長6加,寬4加的長方形按5:1放大,得到的圖形面積
是600cma
【思路點撥】因為按5:1放大,所以長方形的長是6X5=30(即),寬是4X5=20
(cm),根據:長方形的面積=長乂寬,求出擴大后的長方形的面積即可。
【規范解答】解:6X5=30(厘米)
4X5=20(厘米)
30X20=600(平方厘米)
答:得到的圖形的面積是600平方厘米。
故答案為:600o
【考點評析】此題考查的圖形的放大與縮小,求出放大后的長方形的長和寬,是解答
此題的關鍵。
12.(2分)(2021?潮州)一個長方形長2.8厘米,寬1.2厘米,把它按2:1放大,得
到的圖形周長16厘米,面積是原來的4倍。
【思路點撥】按2:1放大是把長與寬分別擴大到原來的2倍,所以用原來的長與寬
分別乘2,求出放大后的長與寬,然后根據長方形周長=2X(長+寬)即可求出放大
后的長方形的周長,根據長方形面積計算=長義寬分別求出原來面積和現在面積,再
用現在面積除以原來面積即可求是多少倍。
【規范解答】解:2.8X2=5.6(厘米)
1.2X2=2.4(厘米)
(5.6+2.4)X2
=8X2
=16(厘米)
5.6X2.4=13.44(平方厘米)
13.444-(2.8X1.2)
=13.444-3.36
=4
答:放大后得到圖形的周長是16厘米,面積是原來的4倍。
故答案為:16;4o
【考點評析】此題主要考查圖形放大與縮小的方法的應用,關鍵是先求出長方形的長
和寬,進而可求其周長和面積。
13.(2分)(2022*松陽縣)三角形/成?是邊長為5厘米的等邊三角形,將這個三角形
沿的V折疊(如圖),陰影部分的周長是15厘米。
【思路點撥】折疊后,MA'=MA,NA'=NA,陰影部分周長=例'+MB^BA'+A'
C+CN^NA',MA'+MB=MA^MB=AB,BA'+4C=BC,CN^NA'=CN^NA=CA,因此,陰
影部分周長=三角形的周長,三角形//是一個等邊三角形,邊已知,據此即可
求出陰影部分周長。
【規范解答】解:因為折疊后,MA'=MA,NA'=NA,陰影部分周長=%'
+4OCN^NA'
又因為例'+MB=MA^MB=AB,BA'+4C=BC,CMNA'=CN^NA=CA
所以陰影部分周長=三角形45C的周長
因為三角形46C是等邊三角形,邊長為5厘米
所以陰影部分周長=5X3=15(厘米)
故答案為:15。
【考點評析】弄清陰影部分周長=三角形力6。的周長是關鍵,也是難點。
三.判斷題(共5小題,滿分5分,每小題1分)
14.(1分)(2022.璧山區)一個面積為15c裾的長方形,把它的各邊放大到原來的2
倍,放大后的長方形面積是30ck。X(判斷對錯)
【思路點撥】把一個長方形的長和寬放大到原來的2倍,則面積擴大到原來的(2X2)
倍,據此解答。
【規范解答】解:15X(2X2)
=15X4
=60(平方厘米)
答:一個面積為15平方厘米的長方形,把它的各邊放大到原來的2倍,放大后的長
方形面積是60平方厘米。
原題說法錯誤。
故答案為:X。
【考點評析】解答本題需明確:長方形的長和寬都擴大到原來的a倍,則面積擴大到
原來的a2倍。
15.(1分)(2022*安新縣)長方形、正方形、平行四邊形、圓形、等腰梯形都是軸對
稱圖形。X(判斷對錯)
【思路點撥】根據軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全
重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據此判斷即可。
【規范解答】解:根據軸對稱圖形的意義可知,長方形、正方形、圓形、等腰梯形都
是軸對稱圖形,但是平行四邊形不一定是軸對稱圖形。
故答案為:X。
【考點評析】軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部
分能夠重合,那么這個是軸對稱圖形。
16.(1分)(2022?武安市)如果一個圓的半徑按2:1放大,那么這個圓的周長擴大到
原來的2倍。J(判斷對錯)
【思路點撥】根據題意,可設圓的半徑為r,則直徑為2廠,那么根據圓的周長公式可
計算出原來圓的周長與擴大后的圓的周長,最后再用擴大后的周長除以原來的周長即
可得到答案。
【規范解答】解:設原來圓的半徑為r,則直徑為2廠
圓的周長為:2rt/-
半徑擴大2倍后,圓的半徑為2廠,圓的直徑為4-
圓的周長為:4nr
周長擴大到原來的:4nr4-2nr=2
圓的半徑按2:1放大后,周長擴大到原來的2倍。說法正確。
故答案為:Vo
【考點評析】解答此題的關鍵是設原來圓的半徑,然后再根據半徑與直徑的關系,圓
的周長公式進行計算即可。
17.(1分)(2022.阜平縣)電風扇扇葉的轉動和車輪的滾動都屬于旋轉。J(判
斷對錯)
【思路點撥】在平面內,將一個圖形繞一點按某個方向轉動一個角度,這樣的運動叫
作圖形的旋轉;據此判斷即可。
【規范解答】解:電風扇扇葉的轉動和車輪的滾動都屬于旋轉。
故答案為:Vo
【考點評析】本題主要考查旋轉的意義,在實際當中的運用,根據題意解答即可。
18.(1分)(2022秋?禹城市期末)任何一個圖形通過平移,都可以和原圖形組成軸對
稱圖形.X.(判斷對錯)
【思路點撥】根據軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全
重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;根據平移的性質可畫圖舉
例證明進行判斷即可.
【規范解答】解:舉例如下:把圖形力向左平移3格.
所以圖形力與平移后的圖形不是軸對稱圖形.
故判:X.
【考點評析】此題主要考查的是平移和軸對稱圖形的定義及其方法的靈活應用.
四.操作題(共8小題,滿分47分)
19.(6分)(2023-鐵山區模擬)(1)把箭頭圖先向下平移5格,再向右平移4格.
(2)把小旗圖繞點4按順時針方向旋轉90°.
(3)把三角形繞點6按逆時針方向旋轉90°.
【思路點撥】(1)根據平移圖形的特征,把箭頭的幾個頂點分別向下平移5格,然后
向右平移4格,再首尾連接各點,即可得到箭頭圖先向下平移5格,再向右平移4
格的圖形.
(2)根據旋轉的意義,找出圖中小旗3個關鍵處,再畫出繞4點按順時針方向旋轉
90度后的形狀即可.
(3)根據旋轉的意義,找出圖中三角形3個關鍵處,再畫出繞6點按逆時針方向旋
轉90度后的形狀即可.
【規范解答】解:如圖:
【考點評析】本題考查了圖形的平移、旋轉變化,主要找準關鍵點,看清是順時針還
是逆時針旋轉,旋轉多少度,難度不大,但易錯.
20.(6分)(2022秋?陵城區期末)請你當當小設計師,用平移、旋轉、對稱的知識構
造圖形。
(1)畫出圖①先向下平移一格,再向右平移6格后的圖形。
(2)畫出圖②以虛線為對稱軸的軸對稱圖形。
(3)要想得到一個完整的圖形,還需要將原圖②繞。點順時針旋轉90°。
【思路點撥】(1)根據平移的特征,把①圖的各頂點分別下平移1格,再向右平移6
格,依次連接即可得到平移后的圖形。
(2)根據軸對稱圖形的特征,對稱點到對稱軸的距離相等,對稱點的連線垂直于對
稱軸,在對稱軸(虛線)的下邊畫出圖②的關鍵對稱點,依次連接即可。
(3)要想得到一個完整的圖形,根據旋轉的特征,要將原圖②繞。點順時針方向旋
轉90°o
【規范解答】解:根據題意畫圖如下:
故答案為:順,90o
【考點評析】圖形平移注意三要素:即原位置、平移方向、平移距離。圖形旋轉注意
四要素:即原位置、旋轉中心、旋轉方向、旋轉角。
21.(6分)(2022.洋縣)①畫出圖形4的另一半,使它成為軸對稱圖形。
②畫出圖形8繞。點順時針旋轉90°得到的圖形。
③在圖中畫出三角形2:1的縮小后的圖形。
【思路點撥】根據軸對稱圖形的特征,對稱點到對稱軸的距離相等,對稱點的連線垂
直于對稱軸,在對稱軸(虛線)的左邊畫出圖4左半圖的關鍵對稱點,依次連接即可
畫出圖形4的另一半,使之成為軸對稱圖形;
根據旋轉的特征,三角形繞點0順時針旋轉90°,點。的位置不動,這個圖形的各
部分均繞此點按相同方向旋轉相同的度數即可畫出旋轉后的圖形;
根據圖形放大與縮小的意義,畫出這個三角形的邊按2:1縮小后的圖形即可。
【規范解答】解:
【考點評析】此題考查了作旋轉一定度數后的圖形、作軸對稱圖形、圖形的放大與縮
【思路點撥】(1)根據平移的特征,把三角形力的各頂點分別向右平移3格,再向正
平移3格,依次連接即可得到平移后的圖形8。
(2)圖形彳是兩直角邊均為2格的直角等腰三角形,由直角三角形兩直角邊即可確
定其形狀,根據圖形放大的意義,把兩直角邊均放大到原來的3倍所得到的圖形就是
按3:1放大后的圖形C。
【規范解答】解:根據題意畫圖如下:
狀不變,改變的是大小。
23.(5分)(2022.禪城區)按要求畫圖。
(1)將梯形向右平移4格;(2)將三角形按1:2縮小。分別畫出平移和縮小后的
(2)根據圖形縮小的方法,畫出縮小后的圖形。據此解答。
【規范解答】解:作圖如下:
【考點評析】此題考查的目的是理解掌握圖形的平移以及圖形放大的方法及應用。
24.(6分)(2022*東昌府區)
(1)按1:2的比縮小長方形畫出縮小后的圖形。縮小后的長方形與原來長方形
的面積比是1:4o
(2)圖形6繞。點順時針旋轉90°得到圖形C,請畫出圖形C。
(3)將圖形C向右平移4格得到圖形。畫出圖形以
少,根據長方形的面積公式:5=ab,把數據代入公式求出原來的面積縮小后的面積,
再根據比的意義解答。
(2)根據圖形旋轉的性質,圖形旋轉后,圖形的形狀和大小不變,只是圖形的位置
發生了變化,據此畫出旋轉后的圖形。
(3)根據圖形平移的性質,圖形平移后,圖形的形狀和大小不變,只是圖形的位置
發生了變化,據此畫出平移后的圖形。
【規范解答】解:(1)64-2=3
4+2=2
(3X2):(6X4)
=6:24
=1:4
作圖如下:
答:縮小后的長方形與原來長方形的面積比是1:4?
(2)圖形6繞。點順時針旋轉90°得到圖形C,請畫出圖形C。作圖如下;
(3)將圖形。向右平移4格得到圖形區畫出圖形以作圖如下:
【考點評析】此題考查的目的是理解掌握圖形縮小的方法及應用,圖形旋轉的性質、
圖形平移的方法及應用,長方形的面積公式及應用,比的意義及應用。
25.(6分)(2022*吳興區模擬)按要求操作。
(2)畫出把長方形繞點4順時針旋轉90°后的圖形。
(3)畫出軸對稱圖形的另一半。
【思路點撥】(1)圓心確定圓的位置,所以把圓的圓心向右移動3格,再向上移動5
格,即可得出平移后的圓,然后縮小為原來的二分之一;
(2)根據圖形旋轉的方法,把長方形與點力相連的兩條邊分別繞點“4”順時針旋轉
90度后,再利用長方形的對邊平行的性質,畫出另外兩條邊,即可得出旋轉后的圖
形;
(3)根據軸對稱圖形的性質,對稱點到對稱軸的距離相等,對稱軸是對稱點的連線
的垂直平分線,在對稱軸的另一邊畫出關鍵的5個對稱點,然后首尾連接各對稱點即
可。
【考點評析】此題考查的知識點有:數對表示位置的方法,圖形的平移、旋轉以及軸
對稱圖形的性質的靈活應用。
26.(6分)(2022*梅縣區)畫一畫。
(1)將長方形縮小,使縮小后的圖形與原圖形對應邊的比是1:2(使。點在0,上)。
(2)將原長方形繞點。順時針旋轉90°,再把旋轉后的圖形向右平移3格(畫出最
后圖形)。
(3)以虛線為對稱軸,畫出圖形4的另一半,使它成為軸對稱圖形。
【思路點撥】(1)根據圖形縮小的方法,將長方形按照1:2縮小,使。點在O上
即可。
(2)根據旋轉的方法,將原長方形繞點。順時針旋轉90°,再把旋轉后的圖形向右
平移3格,畫出最后圖形即可。
(3)根據軸對稱圖形的畫法,以虛線為對稱軸,在對稱軸上邊畫出圖形/的另一半,
使它成為軸對稱圖形即可。
【規范解答】解:作圖如下:
【考點評析】本題考查了放大與縮小、旋轉與平移及軸對稱知識,結合題意分析解答
即可。
五.解答題(共4小題,滿分27分)
27.(6分)(2022-管城區)按要求畫一畫,并完成填空。
(1)畫出三角形力加繞點。順時針旋轉90°后的圖形。點6旋轉后的位置用數對表
示是(8,4)o
(2)把三角形406按2:1的比畫出放大后的圖形,放大后三角形的面積是原來的_4
倍。
【思路點撥】(1)根據旋轉的特征,三角形/如繞點。順時針旋轉90°,點。的位
置不動,這個圖形的各部分均繞此點按相同方向旋轉相同的度數即可畫出旋轉后的圖
形;根據用數對表示點的位置的方法,第一個數字表示列,第二個數字表示行及旋轉
后點6所在的列、行,即可用數對表示出旋轉后點的位置。
(2)由于直角三角形兩直角邊即可確定其形狀,把三角形力必的兩直角邊均放大到
原來的2倍所得到的圖形就是原圖形按2:1放大后的圖形;根據三角形的面積計算
公式“S=」a/T分別計算出放大后的三角形的面積、原三角形的面積,再用放大后
2
三角形的面積除以原三角形的面積。
【規范解答】解:(1)畫出三角形/的繞點0順時針旋轉90°后的圖形(下圖)。點
6旋轉后的位置用數對表示是(8,4)?
(2)把三角形/必按2:1的比畫出放大后的圖形(下圖),放大后三角形的面積是
原來的:
(4X6XA)4-(2X3X-1)
22
=124-3
=4
故答案為:8,4;4倍。
【考點評析】此題考查了作旋轉一定度數后的圖形、圖形的放大與縮小、數對與位置
等、三角形面積的計算、求一個數是另個數的幾分之幾或幾倍。
28.(6分)(2022?濟南)按要求完成操作。
(1)請用數對表示圖中點0的位置:0(5,4)
(2)畫出原圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品飲料行業分析
- 上海閔行職業技術學院《合唱與指揮基礎(2)》2023-2024學年第二學期期末試卷
- 許昌電氣職業學院《老年生活能力評估技術》2023-2024學年第二學期期末試卷
- 南京工業大學《外科學Ⅰ》2023-2024學年第二學期期末試卷
- 2025至2031年中國汽車仿真電氣電路學習實習臺行業投資前景及策略咨詢研究報告
- 2025煤炭買賣合同模板
- 遼寧中醫藥大學杏林學院《足球俱樂部》2023-2024學年第二學期期末試卷
- 道路路基坡度施工方案
- 新建電力線施工方案
- 山西醫科大學晉祠學院《鋼琴基礎(2)》2023-2024學年第一學期期末試卷
- 傳染病登記本
- 304不銹鋼濕硫化氫應力腐蝕開裂案例分析
- 公路橋梁和隧道工程施工安全風險評估指南_圖文
- 田徑運動會各種用表、檢錄表、統計表(朱)
- 固體礦產勘查原始地質編錄細則
- 獎勵協議書范本
- IEC61215:2021-2地面光伏組件-測試內容,,中文
- 機械完整性管理ppt課件
- 鋼中馬氏體組織形態、穩定化
- 內窺鏡PACS系統解決方案
- 離心式鼓風機設計(畢業論文)
評論
0/150
提交評論