




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省福州八中高三下學期第二學段模塊考試數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的偶函數,當時,,設,則()A. B. C. D.2.點在所在的平面內,,,,,且,則()A. B. C. D.3.已知數列滿足,則()A. B. C. D.4.已知復數滿足,則的最大值為()A. B. C. D.65.已知集合,,則A. B.C. D.6.已知數列滿足,且,則的值是()A. B. C.4 D.7.已知數列滿足:)若正整數使得成立,則()A.16 B.17 C.18 D.198.已知等差數列中,則()A.10 B.16 C.20 D.249.將函數圖象向右平移個單位長度后,得到函數的圖象關于直線對稱,則函數在上的值域是()A. B. C. D.10.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數為()A. B. C. D.11.已知函數,,若對,且,使得,則實數的取值范圍是()A. B. C. D.12.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知全集為R,集合,則___________.14.如果復數滿足,那么______(為虛數單位).15.已知函數,則________;滿足的的取值范圍為________.16.已知向量與的夾角為,||=||=1,且⊥(λ),則實數_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在數列中,,(1)求數列的通項公式;(2)若存在,使得成立,求實數的最小值18.(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數的取值范圍;(2)求證:.19.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.20.(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.21.(12分)在世界讀書日期間,某地區調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮居民有100人,農村居民有30人.(1)填寫下面列聯表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?城鎮居民農村居民合計經常閱讀10030不經常閱讀合計200(2)調查組從該樣本的城鎮居民中按分層抽樣抽取出7人,參加一次閱讀交流活動,若活動主辦方從這7位居民中隨機選取2人作交流發言,求被選中的2位居民都是經常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82822.(10分)一個工廠在某年里連續10個月每月產品的總成本(萬元)與該月產量(萬件)之間有如下一組數據:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發現可用線性回歸模型擬合與的關系,請用相關系數加以說明;(2)①建立月總成本與月產量之間的回歸方程;②通過建立的關于的回歸方程,估計某月產量為1.98萬件時,產品的總成本為多少萬元?(均精確到0.001)附注:①參考數據:,,,,.②參考公式:相關系數,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據偶函數性質,可判斷關系;由時,,求得導函數,并構造函數,由進而判斷函數在時的單調性,即可比較大小.【詳解】為定義在上的偶函數,所以所以;當時,,則,令則,當時,,則在時單調遞增,因為,所以,即,則在時單調遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數的性質應用,由導函數性質判斷函數單調性的應用,根據單調性比較大小,屬于中檔題.2、D【解析】
確定點為外心,代入化簡得到,,再根據計算得到答案.【詳解】由可知,點為外心,則,,又,所以①因為,②聯立方程①②可得,,,因為,所以,即.故選:【點睛】本題考查了向量模長的計算,意在考查學生的計算能力.3、C【解析】
利用的前項和求出數列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當時,;當時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.4、B【解析】
設,,利用復數幾何意義計算.【詳解】設,由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復數模的最大值,其實本題可以利用不等式來解決.5、D【解析】
因為,,所以,,故選D.6、B【解析】由,可得,所以數列是公比為的等比數列,所以,則,則,故選B.點睛:本題考查了等比數列的概念,等比數列的通項公式及等比數列的性質的應用,試題有一定的技巧,屬于中檔試題,解決這類問題的關鍵在于熟練掌握等比數列的有關公式并能靈活運用,尤其需要注意的是,等比數列的性質和在使用等比數列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程.7、B【解析】
計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.【點睛】本題考查了數列的相關計算,意在考查學生的計算能力和對于數列公式方法的綜合應用.8、C【解析】
根據等差數列性質得到,再計算得到答案.【詳解】已知等差數列中,故答案選C【點睛】本題考查了等差數列的性質,是數列的常考題型.9、D【解析】
由題意利用函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,求得結果.【詳解】解:把函數圖象向右平移個單位長度后,可得的圖象;再根據得到函數的圖象關于直線對稱,,,,函數.在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,屬于中檔題.10、C【解析】
畫出幾何體的圖形,然后轉化判斷四個命題的真假即可.【詳解】如圖;連接相關點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應用,涉及空間幾何體的體積,直線與平面的位置關系的應用,平面的基本性質,是中檔題.11、D【解析】
先求出的值域,再利用導數討論函數在區間上的單調性,結合函數值域,由方程有兩個根求參數范圍即可.【詳解】因為,故,當時,,故在區間上單調遞減;當時,,故在區間上單調遞增;當時,令,解得,故在區間單調遞減,在區間上單調遞增.又,且當趨近于零時,趨近于正無窮;對函數,當時,;根據題意,對,且,使得成立,只需,即可得,解得.故選:D.【點睛】本題考查利用導數研究由方程根的個數求參數范圍的問題,涉及利用導數研究函數單調性以及函數值域的問題,屬綜合困難題.12、C【解析】
方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C【點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先化簡集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點睛】本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.14、【解析】
把已知等式變形,再由復數代數形式的乘除運算化簡,然后利用復數模的計算公式求解.【詳解】∵,∴,∴,故答案為:.【點睛】本小題主要考查復數除法運算,考查復數的模的求法,屬于基礎題.15、【解析】
首先由分段函數的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當時,滿足題意,∴;當時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點睛】本題考查分段函數的性質的應用,分類討論思想,屬于基礎題.16、1【解析】
根據條件即可得出,由即可得出,進行數量積的運算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點睛】考查向量數量積的運算及計算公式,以及向量垂直的充要條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由得,兩式相減可得是從第二項開始的等比數列,由此即可求出答案;(2),分類討論,當時,,作商法可得數列為遞增數列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數的最小值.【點睛】本題主要考查地推數列的應用,屬于中檔題.18、(1);(2)見解析【解析】
(1)利用導數研究的單調性,分析函數性質,數形結合,即得解;(2)構造函數,可證得:,,分析直線,與從左到右交點的橫坐標,在,處的切線即得解.【詳解】(1)設函數,,令,令故在單調遞減,在單調遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調遞增.③設直線,與從左到右交點的橫坐標依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標依次為,.【點睛】本題考查了函數與導數綜合,考查了學生數形結合,綜合分析,轉化劃歸,邏輯推理,數學運算的能力,屬于較難題.19、(1)見解析;(2)【解析】
(1)由平面平面的性質定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養和向量法的合理運用,屬于中檔題.20、證明見解析;證明見解析.【解析】
利用線面平行的判定定理求證即可;為中點,為中點,可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點,為中點,,又平面,平面,平面;證明:為中點,為中點,,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點睛】本題考查線面平行和面面垂直的判定定理的應用,屬于基礎題.21、(1)見解析,有99%的把握認為經常閱讀與居民居住地有關.(2)【解析】
(1)根據題中數據得到列聯表,然后計算出,與臨界值表中的數據對照后可得結論;(2)由題意得概率為古典概型,根據古典概型概率公式計算可得所求.【詳解】(1)由題意可得:城鎮居民農村居民合計經常閱讀10030130不經常閱讀403070合計14060200則,所以有99%的把握認為經常閱讀與居民居住地有關.(2)在城鎮居民140人中,經常閱讀的有100人,不經常閱讀的有40人.采取分層抽樣抽取7人,則其中經常閱讀的有5人,記為、、、、;不經常閱讀的有2人,記為、.從這7人中隨機選取2人作交流發言,所有可能的情況為,,,,,,,,,,,,,,,,,,,,,共21種,被選中的位居民都是經常閱讀居民的情況有種,所求概率為.【點睛】本題主要考查古典概型的概率計算,以及獨立性檢驗的應用,利用列舉法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 微笑服務培訓內容
- 城鎮排水系統設施建設可行性研究報告(參考)
- 民間個人標準借款合同范文
- 教師聘用勞務合同書
- 協議離婚條件及流程
- 南京無塵車間裝修二零二五年
- 工程車輛租賃合同書模板大全二零二五年
- 股東撤資協議
- 2025年春北師版生物八年級下冊教學課件 第22章 第4節 第2課時 脊椎動物
- 新能源汽車零部件配件制造企業ESG實踐與創新戰略研究報告
- 2023-2029年中國雞尾酒行業市場運行態勢及投資戰略規劃報告
- 2024年記者證考試挑戰試題及答案
- 健康廚房-家庭飲食指南
- 初中生物重要識圖填空速記54個-2025年中考生物一輪復習知識清單
- T-SCCX A 0010-2024 T-CQXS A 0001-2024 信息技術應用創新項目建設規范
- 合作合同范本 英文
- (二調)武漢市2025屆高中畢業生二月調研考試 政治試卷(含標準答案)
- 2025年共青團團課考試題庫及答案
- 2025年中國腰果行業市場深度分析及發展前景預測報告
- 工業機器人集成應用(ABB) 高級 課件 1.2.3 PLC設備選型方法與工作站PLC選型
- 《危險作業審批制度》知識培訓
評論
0/150
提交評論