江蘇省海門市2025年高三3月綜合練習(一模)數學試題試卷_第1頁
江蘇省海門市2025年高三3月綜合練習(一模)數學試題試卷_第2頁
江蘇省海門市2025年高三3月綜合練習(一模)數學試題試卷_第3頁
江蘇省海門市2025年高三3月綜合練習(一模)數學試題試卷_第4頁
江蘇省海門市2025年高三3月綜合練習(一模)數學試題試卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省海門市2025年高三3月綜合練習(一模)數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則,,的大小關系為()A. B. C. D.2.在中,內角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.3.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.4.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}5.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.6.的展開式中,項的系數為()A.-23 B.17 C.20 D.637.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.8.已知非零向量,滿足,,則與的夾角為()A. B. C. D.9.在關于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.若復數滿足,則()A. B. C. D.11.已知是虛數單位,則復數()A. B. C.2 D.12.已知等差數列中,若,則此數列中一定為0的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,己知直線與函數的圖象在y軸右側的公共點從左到右依次為,,…,若點的橫坐標為1,則點的橫坐標為________.14.設為正實數,若則的取值范圍是__________.15.如圖是九位評委打出的分數的莖葉統計圖,去掉一個最高分和一個最低分后,所剩數據的平均分為_______.16.如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年春節期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.(1)現有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎機會.①試分別計算他選擇兩種抽獎方案最終獲得返金券的數學期望;②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?18.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.19.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設P為橢圓上一點,且OM+ON=t20.(12分)已知點和橢圓.直線與橢圓交于不同的兩點,.(1)當時,求的面積;(2)設直線與橢圓的另一個交點為,當為中點時,求的值.21.(12分)設前項積為的數列,(為常數),且是等差數列.(I)求的值及數列的通項公式;(Ⅱ)設是數列的前項和,且,求的最小值.22.(10分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數方程為(為參數).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

構造函數,利用導數求得的單調區間,由此判斷出的大小關系.【詳解】依題意,得,,.令,所以.所以函數在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數求函數的單調區間,考查化歸與轉化的數學思想方法,考查對數式比較大小,屬于中檔題.2.A【解析】

根據正弦定理可得,求出,根據平方關系求出.由兩端平方,求的最大值,根據三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數量積運算,屬于中檔題.3.D【解析】

由雙曲線方程可得漸近線方程,根據傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據雙曲線漸近線傾斜角求解參數值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.4.B【解析】

按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎題.5.B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6.B【解析】

根據二項式展開式的通項公式,結合乘法分配律,求得的系數.【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數為17.故選:B【點睛】本小題考查二項式定理及展開式系數的求解方法等基礎知識,考查理解能力,計算能力,分類討論和應用意識.7.D【解析】

根據,先確定出的長度,然后利用雙曲線定義將轉化為的關系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據雙曲線中的長度關系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.8.B【解析】

由平面向量垂直的數量積關系化簡,即可由平面向量數量積定義求得與的夾角.【詳解】根據平面向量數量積的垂直關系可得,,所以,即,由平面向量數量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數量積的運算,平面向量夾角的求法,屬于基礎題.9.C【解析】

討論當時,是否恒成立;討論當恒成立時,是否成立,即可選出正確答案.【詳解】解:當時,,由開口向上,則恒成立;當恒成立時,若,則不恒成立,不符合題意,若時,要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點睛】本題考查了命題的關系,考查了不等式恒成立問題.對于探究兩個命題的關系時,一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.10.C【解析】

把已知等式變形,利用復數代數形式的除法運算化簡,再由復數模的計算公式求解.【詳解】解:由,得,∴.故選C.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法,是基礎題.11.A【解析】

根據復數的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數的基本運算,屬于基礎題.12.A【解析】

將已知條件轉化為的形式,由此確定數列為的項.【詳解】由于等差數列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數列的基本量計算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

當時,得,或,依題意可得,可求得,繼而可得答案.【詳解】因為點的橫坐標為1,即當時,,所以或,又直線與函數的圖象在軸右側的公共點從左到右依次為,,所以,故,所以函數的關系式為.當時,(1),即點的橫坐標為1,為二函數的圖象的第二個公共點.故答案為:1.【點睛】本題考查三角函數關系式的恒等變換、正弦型函數的性質的應用,主要考查學生的運算能力及思維能力,屬于中檔題.14.【解析】

根據,可得,進而,有,而,令,得到,再用導數法求解,【詳解】因為,所以,所以,所以,所以,令,,所以,當時,,當時,所以當時,取得最大值,又,所以取值范圍是,故答案為:【點睛】本題主要考查基本不等式的應用和導數法求最值,還考查了運算求解的能力,屬于難題,15.1【解析】

寫出莖葉圖對應的所有的數,去掉最高分,最低分,再求平均分.【詳解】解:所有的數為:77,78,82,84,84,86,88,93,94,共9個數,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數,平均分為,故答案為1.【點睛】本題考查莖葉圖及平均數的計算,屬于基礎題.16.【解析】

畫圖直觀圖可得該幾何體為棱錐,再計算高求解體積即可.【詳解】解:如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點睛】本題主要考查了四棱錐中的長度計算以及垂直的判定和體積計算等,需要根據題意三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)①②第一種抽獎方案.【解析】

(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據相互獨立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計算即可,方案二根據二項分布計算期望即可②根據①得出結論.【詳解】(1)選擇方案一,則每一次摸到紅球的概率為設“每位顧客獲得180元返金劵”為事件A,則所以兩位顧客均獲得180元返金劵的概率(2)①若選擇抽獎方案一,則每一次摸到紅球的概率為,每一次摸到白球的概率為.設獲得返金劵金額為元,則可能的取值為60,100,140,180.則;;;.所以選擇抽獎方案一,該顧客獲得返金劵金額的數學期望為(元)若選擇抽獎方案二,設三次摸球的過程中,摸到紅球的次數為,最終獲得返金劵的金額為元,則,故所以選擇抽獎方案二,該顧客獲得返金劵金額的數學期望為(元).②即,所以該超市應選擇第一種抽獎方案【點睛】本題主要考查了古典概型,相互獨立事件的概率,二項分布,期望,及概率知識在實際問題中的應用,屬于中檔題.18.(1).(2).【解析】

(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,則(﹣1,0,2),(﹣2,﹣1,1),計算夾角得到答案.(2)設,0≤λ≤1,計算P(0,2λ,2﹣2λ),計算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據夾角公式計算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,∵AD=2,AB=AF=2EF=2,P是DF的中點,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),設P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P(0,,),∴PF的長度|PF|.【點睛】本題考查了異面直線夾角,根據二面角求長度,意在考查學生的空間想象能力和計算能力.19.(1)x24+【解析】試題分析:本題主要考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標準方程;第二問,討論直線MN的斜率是否存在,當直線MN的斜率存在時,直線方程與橢圓方程聯立,消參,利用韋達定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標準方程為x2(2)由題意知,當直線MN斜率存在時,設直線方程為y=k(x-1),M(x聯立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標準方程及其幾何性質、直線與橢圓的位置

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論