




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆吉林省重點高中高考模擬考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數值的個數為()A.1 B.2 C.3 D.42.已知函數(,,),將函數的圖象向左平移個單位長度,得到函數的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.4.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.5.已知集合,定義集合,則等于()A. B.C. D.6.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.907.我國古代數學著作《九章算術》中有如下問題:“今有器中米,不知其數,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1008.若sin(α+3π2A.-12 B.-139.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽國內外.據統計,煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態分布,則直徑在內的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.954410.已知橢圓內有一條以點為中點的弦,則直線的方程為()A. B.C. D.11.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()12.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.6二、填空題:本題共4小題,每小題5分,共20分。13.曲線y=e-5x+2在點(0,3)處的切線方程為________.14.記數列的前項和為,已知,且.若,則實數的取值范圍為________.15.根據如圖所示的偽代碼,若輸入的的值為2,則輸出的的值為____________.16.一個袋中裝著標有數字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數字最大的為4的概率是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數列是遞增數列,且.(1)求數列的通項公式;(2)若,求數列的前項和.18.(12分)已知函數,.(1)若函數在上單調遞減,且函數在上單調遞增,求實數的值;(2)求證:(,且).19.(12分)已知三棱柱中,,是的中點,,.(1)求證:;(2)若側面為正方形,求直線與平面所成角的正弦值.20.(12分)已知中,內角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設,求的取值范圍.21.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.22.(10分)在平面直角坐標系中,直線的參數方程為(為參數),曲線的極坐標方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標方程;(Ⅱ)設點,直線與曲線相交于,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:根據題意,當時,令,得;當時,令,得,故輸入的實數值的個數為1.考點:程序框圖.2、B【解析】
先根據圖象求出函數的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據充分條件,必要條件的定義求出.【詳解】設,根據圖象可知,,再由,取,∴.將函數的圖象向右平移個單位長度,得到函數的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點睛】本題主要考查利用圖象求正(余)弦型函數的解析式,三角函數的圖形變換,二倍角公式的應用,充分條件,必要條件的定義的應用,意在考查學生的數學運算能力和邏輯推理能力,屬于中檔題.3、B【解析】
先分別判斷命題真假,再由復合命題的真假性,即可得出結論.【詳解】為真命題;命題是假命題,比如當,或時,則不成立.則,,均為假.故選:B【點睛】本題考查復合命題的真假性,判斷簡單命題的真假是解題的關鍵,屬于基礎題.4、B【解析】
首先求得兩曲線的交點坐標,據此可確定積分區間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯立方程:可得:,,結合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項.【點睛】本題主要考查定積分的概念與計算,屬于中等題.5、C【解析】
根據定義,求出,即可求出結論.【詳解】因為集合,所以,則,所以.故選:C.【點睛】本題考查集合的新定義運算,理解新定義是解題的關鍵,屬于基礎題.6、A【解析】
利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.7、B【解析】
根據程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.8、B【解析】
由三角函數的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.9、C【解析】
根據服從的正態分布可得,,將所求概率轉化為,結合正態分布曲線的性質可求得結果.【詳解】由題意,,,則,,所以,.故果實直徑在內的概率為0.8185.故選:C【點睛】本題考查根據正態分布求解待定區間的概率問題,考查了正態曲線的對稱性,屬于基礎題.10、C【解析】
設,,則,,相減得到,解得答案.【詳解】設,,設直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內點差法求直線方程,意在考查學生的計算能力和應用能力.11、D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.12、A【解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
先利用導數求切線的斜率,再寫出切線方程.【詳解】因為y′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點睛】(1)本題主要考查導數的幾何意義和函數的求導,意在考查學生對這些知識的掌握水平和分析推理能力.(2)函數在點處的導數是曲線在處的切線的斜率,相應的切線方程是14、【解析】
根據遞推公式,以及之間的關系,即可容易求得,再根據數列的單調性,求得其最大值,則參數的范圍可求.【詳解】當時,,解得.所以.因為,則,兩式相減,可得,即,則.兩式相減,可得.所以數列是首項為3,公差為2的等差數列,所以,則.令,則.當時,,數列單調遞減,而,,,故,即實數的取值范圍為.故答案為:.【點睛】本題考查由遞推公式求數列的通項公式,涉及數列單調性的判斷,屬綜合困難題.15、【解析】
滿足條件執行,否則執行.【詳解】本題實質是求分段函數在處的函數值,當時,.故答案為:1【點睛】本題考查條件語句的應用,此類題要做到讀懂算法語句,本題是一道容易題.16、【解析】
由題,得滿足題目要求的情況有,①有一個數字4,另外兩個數字從1,2,3里面選和②有兩個數字4,另外一個數字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個數字4,另外兩個數字從1,2,3里面選,一共有種情況;②有兩個數字4,另外一個數字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數字最大的為4的概率.故答案為:【點睛】本題主要考查古典概型與組合的綜合問題,考查學生分析問題和解決問題的能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先利用等比數列的性質,可分別求出的值,從而可求出數列的通項公式;(2)利用錯位相減求和法可求出數列的前項和.【詳解】解:(1)由是遞增等比數列,,聯立,解得或,因為數列是遞增數列,所以只有符合題意,則,結合可得,∴數列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.【點睛】本題考查了等比數列的性質,考查了等比數列的通項公式,考查了利用錯位相減法求數列的前項和.18、(1)1;(2)見解析【解析】
(1)分別求得與的導函數,由導函數與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數在上單調遞減,∴,即在上恒成立,∴,又∵函數在上單調遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數在上為減函數,在上為增函數,而,∴當時,,當時,.∴∴即,∴.【點睛】本題考查了導數與函數單調性關系,放縮法在證明不等式中的應用,屬于難題.19、(1)證明見解析(2)【解析】
(1)取的中點,連接,,證明平面得出,再得出;(2)建立空間坐標系,求出平面的法向量,計算,即可得出答案.【詳解】(1)證明:取的中點,連接,,,,,,,故,又,,平面,平面,,,分別是,的中點,,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內作直線的垂線,以為原點,以,,為所在直線為坐標軸建立空間直角坐標系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設平面的法向量為,,,則,即,令可得:,,,,.直線與平面所成角的正弦值為,.【點睛】本題主要考查了線面垂直的判定與性質,考查空間向量與空間角的計算,屬于中檔題.20、(1);(2).【解析】
(1)由正弦定理直接可求,然后運用兩角和的正弦公式算出;(2)化簡,由余弦定理得,利用基本不等式求出,確定角范圍,進而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點睛】本題主要考查了正余弦定理的應用,基本不等式的應用,三角函數的值域等,考查了學生運算求解能力.21、(1);(2).【解析】
(1)根據焦點坐標和離心率,結合橢圓中的關系,即可求得的值,進而得橢圓的標準方程.(2)設出直線的方程為,由題意可知為中點.聯立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運算及數量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數量積公式并化簡,由換元法令,代入可得,再令及,結合函數單調性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設直線的方程為,點滿足,則為中點,點在圓上,設,聯立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點,則點在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因為在內單調遞增,所以,即所以【點睛】本題考查了橢圓的標準方程求法,直線與橢圓的位置關系綜合應用,由韋達定理研究參數間的關系,平面向量的線性運算與數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年重陽節活動策劃方案詳細
- 2025年電子防噪音耳罩項目可行性研究報告
- 2025年電動直升機玩具項目可行性研究報告
- 2025年田中刀項目可行性研究報告
- 2025年特種節能加熱器項目可行性研究報告
- 2025年燕頭項目可行性研究報告
- 湖北武漢市華中師大一附中2025屆高三3月押軸試題物理試題試卷含解析
- 江蘇航運職業技術學院《中醫藥概論》2023-2024學年第一學期期末試卷
- 2025春新版六年級英語下冊《陳述句》寒假銜接練習帶答案
- 湖北科技學院《康復機構開辦與管理》2023-2024學年第一學期期末試卷
- 《奈奎斯特準則》課件
- 操作劇院燈光音響的工作手冊
- 生物醫藥科技成果轉化
- 宋大叔教音樂(講義)
- 催收策略及催收方案
- 供熱管網安全運行管理制度
- 講解員崗位業務知識培訓
- 來料檢驗規范-(適用于電子廠)(共11份)
- 2023年四川省綿陽市中考三模數學試題(原卷版)
- 上會制度材料格式范文
- 動物疫病緊急流行病學調查技術規范
評論
0/150
提交評論