2025屆新疆呼圖壁縣一中高三第一次(2月)模擬考試數學試題_第1頁
2025屆新疆呼圖壁縣一中高三第一次(2月)模擬考試數學試題_第2頁
2025屆新疆呼圖壁縣一中高三第一次(2月)模擬考試數學試題_第3頁
2025屆新疆呼圖壁縣一中高三第一次(2月)模擬考試數學試題_第4頁
2025屆新疆呼圖壁縣一中高三第一次(2月)模擬考試數學試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆新疆呼圖壁縣一中高三第一次(2月)模擬考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,且,則()A. B. C. D.2.已知函數,若函數的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.3.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.4.已知數列的通項公式是,則()A.0 B.55 C.66 D.785.已知函數(其中,,)的圖象關于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:①直線是函數圖象的一條對稱軸;②點是函數的一個對稱中心;③函數與的圖象的所有交點的橫坐標之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③6.設,且,則()A. B. C. D.7.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}8.已知向量,,則向量在向量上的投影是()A. B. C. D.9.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經過,設球的半徑分別為,則()A. B. C. D.10.若函數,在區間上任取三個實數,,均存在以,,為邊長的三角形,則實數的取值范圍是()A. B. C. D.11.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直12.已知函數是定義域為的偶函數,且滿足,當時,,則函數在區間上零點的個數為()A.9 B.10 C.18 D.20二、填空題:本題共4小題,每小題5分,共20分。13.銳角中,角,,所對的邊分別為,,,若,則的取值范圍是______.14.已知實數a,b,c滿足,則的最小值是______.15.的展開式中常數項是___________.16.設函數,則滿足的的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)下表是某公司2018年5~12月份研發費用(百萬元)和產品銷量(萬臺)的具體數據:月份56789101112研發費用(百萬元)2361021131518產品銷量(萬臺)1122.563.53.54.5(Ⅰ)根據數據可知與之間存在線性相關關系,求出與的線性回歸方程(系數精確到0.01);(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當時,不設獎;當時,每位員工每日獎勵200元;當時,每位員工每日獎勵300元;當時,每位員工每日獎勵400元.現已知該公司某月份日銷售(萬臺)服從正態分布(其中是2018年5-12月產品銷售平均數的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數大約多少元.參考數據:,,,,參考公式:相關系數,其回歸直線中的,若隨機變量服從正態分布,則,.18.(12分)已知橢圓:(),四點,,,中恰有三點在橢圓上.(1)求橢圓的方程;(2)設橢圓的左右頂點分別為.是橢圓上異于的動點,求的正切的最大值.19.(12分)已知直線是曲線的切線.(1)求函數的解析式,(2)若,證明:對于任意,有且僅有一個零點.20.(12分)百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據統計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數,表示被清華、北大等名校錄取的學生人數)年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發現與之間具有線性相關關系,求關于的線性回歸方程;(保留兩位有效數字)(2)若已知該校2019年通過自主招生獲得降分資格的學生人數為61人,預測2019年高考該校考人名校的人數;(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業的人數的分布列和期望.參考公式:,參考數據:,,,21.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現以為折痕將點旋轉至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.22.(10分)為了實現中華民族偉大復興之夢,把我國建設成為富強民主文明和諧美麗的社會主義現代化強國,黨和國家為勞動者開拓了寬廣的創造性勞動的舞臺.借此“東風”,某大型現代化農場在種植某種大棚有機無公害的蔬菜時,為創造更大價值,提高畝產量,積極開展技術創新活動.該農場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產量的區別,該農場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產量數據信息如下圖:(1)如果你是該農場的負責人,在只考慮畝產量的情況下,請根據圖中的數據信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設備的每年成本為0.2千元/畝.已知該農場共有大棚100間(每間1畝),農場種植的該蔬菜每年產出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據題中所給數據,用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農場根據以往該蔬菜的種植經驗,認為一間大棚畝產量超過5.25千斤為增產明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產明顯的大棚間數為,求的分布列及期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】分析:首先利用同角三角函數關系式,結合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉化為關于的式子,代入從而求得結果.詳解:根據題中的條件,可得為銳角,根據,可求得,而,故選B.點睛:該題考查的是有關同角三角函數關系式以及倍角公式的應用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應用同角三角函數關系式求解,也可以結合三角函數的定義式求解.2.C【解析】

對此分段函數的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環,而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經單調性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數不能在端點處取得極值∴,,∴對應極值,,∴故選:C【點睛】本題考查基本函數極值的求解,從函數表達式中抽離出相應的等差數列和等比數列,最后分組求和,要求學生對數列和函數的熟悉程度高,為中檔題3.D【解析】

如圖所示,設的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質和線面垂直的性質可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.4.D【解析】

先分為奇數和偶數兩種情況計算出的值,可進一步得到數列的通項公式,然后代入轉化計算,再根據等差數列求和公式計算出結果.【詳解】解:由題意得,當為奇數時,,當為偶數時,所以當為奇數時,;當為偶數時,,所以故選:D【點睛】此題考查數列與三角函數的綜合問題,以及數列求和,考查了正弦函數的性質應用,等差數列的求和公式,屬于中檔題.5.C【解析】分析:根據最低點,判斷A=3,根據對稱中心與最低點的橫坐標求得周期T,再代入最低點可求得解析式為,依次判斷各選項的正確與否.詳解:因為為對稱中心,且最低點為,所以A=3,且由所以,將帶入得,所以由此可得①錯誤,②正確,③當時,,所以與有6個交點,設各個交點坐標依次為,則,所以③正確所以選C點睛:本題考查了根據條件求三角函數的解析式,通過求得的解析式進一步研究函數的性質,屬于中檔題.6.C【解析】

將等式變形后,利用二次根式的性質判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數方程,恒等變化后根據的關系即可求解,屬于簡單題目.7.B【解析】

按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎題.8.A【解析】

先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數學運算的能力,屬于中檔題.9.D【解析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質的使用,內切球的性質,數形結合思想,轉化思想,直觀想象與數學運算的核心素養10.D【解析】

利用導數求得在區間上的最大值和最小,根據三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區間上的最大值為.要使在區間上任取三個實數,,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導數研究函數的最值,考查恒成立問題的求解,屬于中檔題.11.D【解析】

根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.12.B【解析】

由已知可得函數f(x)的周期與對稱軸,函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,作出函數f(x)與g(x)的圖象如圖,數形結合即可得到答案.【詳解】函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,由f(x)=f(2﹣x),得函數f(x)圖象關于x=1對稱,∵f(x)為偶函數,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數,∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數f(x)與g(x)的圖象如圖:由圖可知,兩函數圖象共10個交點,即函數F(x)=f(x)在區間上零點的個數為10.故選:B.【點睛】本題考查函數的零點與方程根的關系,考查數學轉化思想方法與數形結合的解題思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數的性質得出的范圍,再利用二倍角公式化簡,即可得出答案.【詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,,.故答案為【點睛】本題主要考查了正弦定理和余弦定理的應用,屬于中檔題.14.【解析】

先分離出,應用基本不等式轉化為關于c的二次函數,進而求出最小值.【詳解】解:若取最小值,則異號,,根據題意得:,又由,即有,則,即的最小值為,故答案為:【點睛】本題考查了基本不等式以及二次函數配方求最值,屬于中檔題.15.-160【解析】試題分析:常數項為.考點:二項展開式系數問題.16.【解析】

當時,函數單調遞增,當時,函數為常數,故需滿足,且,解得答案.【詳解】,當時,函數單調遞增,當時,函數為常數,需滿足,且,解得.故答案為:.【點睛】本題考查了根據函數單調性解不等式,意在考查學生對于函數性質的靈活運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)7839.3元【解析】

(Ⅰ)由題意計算x、y的平均值,進而由公式求出回歸系數b和a,即可寫出回歸直線方程;(Ⅱ)由題意計算平均數μ,得出z~N(μ,),求出日銷量z∈[0.13,0.15)、[0.15,0.16)和[0.16,+∞)的概率,計算獎金總數是多少.【詳解】(Ⅰ)因為,,因為,所以,所以;(Ⅱ)因為,所以,故即,日銷量的概率為,日銷量的概率為,日銷量的概率為,所以獎金總數大約為:(元).【點睛】本題考查利用最小二乘法求回歸直線方程,還考查了利用正態分布計算概率,進而估計總體情況,屬于中檔題.18.(1);(2)【解析】

(1)分析可得必在橢圓上,不在橢圓上,代入即得解;(2)設直線PA,PB的傾斜角分別為,斜率為,可得.則,,利用均值不等式,即得解.【詳解】(1)因為關于軸對稱,所以必在橢圓上,∴不在橢圓上∴,,即.(2)設橢圓上的點(),設直線PA,PB的傾斜角分別為,斜率為又∴.,,(不妨設).故當且僅當,即時等號成立【點睛】本題考查了直線和橢圓綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于較難題.19.(1)(2)證明見解析【解析】

(1)對函數求導,并設切點,利用點既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當x充分小時,當x充分大時,可得至少有一個零點.再證明零點的唯一性,即對函數求導得,對分和兩種情況討論,即可得答案.【詳解】(1)根據題意,,設直線與曲線相切于點.根據題意,可得,解之得,所以.(2)由(1)可知,則當x充分小時,當x充分大時,∴至少有一個零點.∵,①若,則,在上單調遞增,∴有唯一零點.②若令,得有兩個極值點,∵,∴,∴.∴在上單調遞增,在上單調遞減,在上單調遞增.∴極大值為.,又,∴在(0,16)上單調遞增,∴,∴有唯一零點.綜上可知,對于任意,有且僅有一個零點.【點睛】本題考查導數的幾何意義的運用、利用導數證明函數的零點個數,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力和運算求解能力,求解時注意零點存在定理的運用.20.(1);(2)117人;(3)分布列見解析,【解析】

(1)首先求得和,再代入公式即可列方程,由此求得關于的線性回歸方程;(2)根據回歸直線方程計算公式,計算可得人數;(3)和被選中的人數分別為2和3,利用超幾何分布分布列的計算公式,計算出的分布列,并求得數學期望.【詳解】(1)由題,所以線性回歸方程為(若第一問求出.)(2)當時,所以預測2019年高考該校考入名校的人數約為117人(3)由題知和被選中的人數分別為2和3,進行演講的兩人是2018年畢業的人數的所有可能取值為0,1,2,,的分布列為012【點睛】本小題主要考查平均數有關計算,考查回歸直線方程的計算,考查期望的計算,考查超幾何分布和數據處理能力,屬于中檔題.21.(1)證明見詳解;(2)【解析】

(1)在折疊前的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論