




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省吉林市三校聯考2025屆高三下入學測試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形2.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.3.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.4.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.5.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-36.已知是偶函數,在上單調遞減,,則的解集是A. B.C. D.7.等比數列若則()A.±6 B.6 C.-6 D.8.總體由編號01,,02,…,19,20的20個個體組成.利用下面的隨機數表選取5個個體,選取方法是隨機數表第1行的第5列和第6列數字開始由左到右依次選取兩個數字,則選出來的第5個個體的編號為7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.019.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.10.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.11.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.12.一個由兩個圓柱組合而成的密閉容器內裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數滿足(為虛數單位),則復數的實部為____________.14.在平面直角坐標系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點P,且點P關于直線x-y=0的對稱點Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.15.如圖所示,直角坐標系中網格小正方形的邊長為1,若向量、、滿足,則實數的值為_______.16.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,,且.(1)當時,求函數的減區間;(2)求證:方程有兩個不相等的實數根;(3)若方程的兩個實數根是,試比較,與的大小,并說明理由.18.(12分)已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.19.(12分)已知,,(1)求的最小正周期及單調遞增區間;(2)已知銳角的內角,,的對邊分別為,,,且,,求邊上的高的最大值.20.(12分)如圖,設點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當時,(1)求橢圓的方程.(2)當時,求的面積.21.(12分)設橢圓的左右焦點分別為,離心率是,動點在橢圓上運動,當軸時,.(1)求橢圓的方程;(2)延長分別交橢圓于點(不重合).設,求的最小值.22.(10分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續奮斗、凱歌前行的100年,是中口青年用青春之我創造青春之中國、青春之民族的100年.為繼承和發揚五四精神在青年節到來之際,學校組織“五四運動100周年”知識競賽,競賽的一個環節由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現有甲同學參加該環節的比賽.(1)求甲同學至少抽到2道B類題的概率;(2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現已知甲同學恰好抽中2道A類題和1道B類題,用X表示甲同學答對題目的個數,求隨機變量X的分布列和數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當時,為直角三角形;當時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點睛】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學生分析解決問題的能力,屬于基礎題.2.B【解析】
根據角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.3.A【解析】
設,則MF的中點坐標為,代入雙曲線的方程可得的關系,再轉化成關于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設,∴MF的中點坐標為.代入方程可得,∴,∴,∴(負值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構造的齊次方程.4.A【解析】
聯立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關于的關系式,解方程求解即可.【詳解】聯立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關于的關系式是求解本題的關鍵;屬于中檔題、常考題型.5.D【解析】分析:根據平面向量的數量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數量積以及投影的應用問題,也考查了數形結合思想的應用問題.6.D【解析】
先由是偶函數,得到關于直線對稱;進而得出單調性,再分別討論和,即可求出結果.【詳解】因為是偶函數,所以關于直線對稱;因此,由得;又在上單調遞減,則在上單調遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數的性質解對應不等式,熟記函數的奇偶性、對稱性、單調性等性質即可,屬于常考題型.7.B【解析】
根據等比中項性質代入可得解,由等比數列項的性質確定值即可.【詳解】由等比數列中等比中項性質可知,,所以,而由等比數列性質可知奇數項符號相同,所以,故選:B.【點睛】本題考查了等比數列中等比中項的簡單應用,注意項的符號特征,屬于基礎題.8.D【解析】從第一行的第5列和第6列起由左向右讀數劃去大于20的數分別為:08,02,14,07,01,所以第5個個體是01,選D.考點:此題主要考查抽樣方法的概念、抽樣方法中隨機數表法,考查學習能力和運用能力.9.D【解析】
由雙曲線方程可得漸近線方程,根據傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據雙曲線漸近線傾斜角求解參數值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.10.B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.11.B【解析】
根據正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.12.B【解析】
根據空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用復數的概念與復數的除法運算計算即可得到答案.【詳解】,所以復數的實部為2.故答案為:2【點睛】本題考查復數的除法運算,考查學生的基本計算能力,是一道基礎題.14.【解析】
設圓C1上存在點P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉化成兩個新圓有公共點求參數范圍.【詳解】設圓C1上存在點P(x0,y0)滿足題意,點P關于直線x-y=0的對稱點Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點即可,所以|r-1|≤≤r+1,解得.故答案為:【點睛】此題考查圓與圓的位置關系,其中涉及點關于直線對稱點問題,兩個圓有公共點的判定方式.15.【解析】
根據圖示分析出、、的坐標表示,然后根據坐標形式下向量的數量積為零計算出的取值.【詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【點睛】本題考查向量的坐標表示以及坐標形式下向量的數量積運算,難度較易.已知,若,則有.16.【解析】
由中位線定理和正方體性質得,從而作出異面直線所成的角,在三角形中計算可得.【詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.【點睛】本題考查異面直線所成的角,解題關鍵是根據定義作出異面直線所成的角.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)詳見解析(3)【解析】
試題分析:(1)當時,,由得減區間;(2)因為,所以,因為所以,方程有兩個不相等的實數根;(3)因為,,所以試題解析:(1)當時,,由得減區間;(2)法1:,,,所以,方程有兩個不相等的實數根;法2:,,是開口向上的二次函數,所以,方程有兩個不相等的實數根;(3)因為,,又在和增,在減,所以.考點:利用導數求函數減區間,二次函數與二次方程關系18.(1)見解析;(2).【解析】
(1)先連接,根據線面平行的判定定理,即可證明結論成立;(2)在圖2中,過點作,垂足為,連接,,證明平面平面,得到點在底面上的投影必落在直線上,記為點在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數據求解,即可得出結果.【詳解】(1)連接,因為等腰梯形中(如圖1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點,為中點,易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關系沒有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因為平面,平面,所以平面;(2)在圖2中,過點作,垂足為,連接,,因為,,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點在底面上的投影必落在直線上;記為點在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因為,所以,因此,,故;因為,所以,因此,故,所以.即直線與平面所成角的正弦值為.【點睛】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于常考題型.19.(1)的最小正周期為:;函數單調遞增區間為:;(2).【解析】
(1)根據誘導公式,結合二倍角的正弦公式、輔助角公式把函數的解析式化簡成余弦型函數解析式形式,利用余弦型函數的最小正周期公式和單調性進行求解即可;(2)由(1)結合,求出的大小,再根據三角形面積公式,結合余弦定理和基本不等式進行求解即可.【詳解】(1)的最小正周期為:;當時,即當時,函數單調遞增,所以函數單調遞增區間為:;(2)因為,所以設邊上的高為,所以有,由余弦定理可知:(當用僅當時,取等號),所以,因此邊上的高的最大值.【點睛】本題考查了正弦的二倍角公式、誘導公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應用,考查了數學運算能力.20.(1)(2)【解析】
(1)先求出圓心到直線的距離為,再根據得到,解之即得a的值,再根據c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.【詳解】(1)因為直線過點,且斜率.所以直線的方程為,即,所以圓心到直線的距離為,又因為,圓的半徑為,所以,即,解之得,或(舍去
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玻璃深加工合同協議
- 電商快遞合作協議合同書
- 環保磚購買合同協議
- 疫情休假協議書模板
- 瑜伽館預售協議合同
- 物資采購居間合同協議
- 電視臺宣傳合同協議
- 電機外殼購買合同協議
- 瘦身美容服務合同協議
- 物資租賃開口合同協議
- 人教版 七年級英語下冊 第二學期 期中綜合測試卷(2025年春)
- “中華傳統文化經典研習”任務群下先秦諸子散文教學策略研究
- 2025年高考語文模擬作文導寫及點評:社會時鐘
- 《護理信息系統》課件
- 《疥瘡的防治及治療》課件
- 施工現場平面布置與臨時設施、臨時道路布置方案
- 建筑施工大型機械設備安全使用與管理培訓
- 技術轉讓合同備忘錄協議備忘錄(2024年版)
- 注冊會計師財務成本管理章節練習題三
- 第十一單元課題1化學與人體健康-2024-2025學年九年級化學人教版(2024)下冊
- 6S管理制度(可參考)-6s管理制度
評論
0/150
提交評論