




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省鳳陽縣二中高考第一次模擬考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的一次項系數為()A. B. C. D.2.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.3.已知復數是正實數,則實數的值為()A. B. C. D.4.函數的圖象可能為()A. B.C. D.5.已知數列為等差數列,為其前項和,,則()A.7 B.14 C.28 D.846.下列四個結論中正確的個數是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.47.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.8.三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為()A. B. C. D.9.已知實數滿足不等式組,則的最小值為()A. B. C. D.10.設復數滿足,則()A. B. C. D.11.已知集合A,則集合()A. B. C. D.12.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是拋物線的焦點,過作直線與相交于兩點,且在第一象限,若,則直線的斜率是_________.14.直線過圓的圓心,則的最小值是_____.15.已知復數z1=1﹣2i,z2=a+2i(其中i是虛數單位,a∈R),若z1?z2是純虛數,則a的值為_____.16.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系.(1)設直線l的極坐標方程為,若直線l與曲線C交于兩點A.B,求AB的長;(2)設M、N是曲線C上的兩點,若,求面積的最大值.18.(12分)某精密儀器生產車間每天生產個零件,質檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據多年的生產數據和經驗,這些零件的長度服從正態分布(單位:微米),且相互獨立.若零件的長度滿足,則認為該零件是合格的,否則該零件不合格.(1)假設某一天小張抽查出不合格的零件數為,求及的數學期望;(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機變量服從正態分布,則.19.(12分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.20.(12分)已知函數,其中為自然對數的底數.(1)若函數在區間上是單調函數,試求的取值范圍;(2)若函數在區間上恰有3個零點,且,求的取值范圍.21.(12分)已知數列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數列的通項公式;(2)設數列滿足,,,若數列是單調遞減數列,求常數t的取值范圍.22.(10分)已知函數有兩個零點.(1)求的取值范圍;(2)是否存在實數,對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據多項式乘法法則得出的一次項系數,然后由等差數列的前項和公式和組合數公式得出結論.【詳解】由題意展開式中的一次項系數為.故選:B.【點睛】本題考查二項式定理的應用,應用多項式乘法法則可得展開式中某項系數.同時本題考查了組合數公式.2.D【解析】
連接,根據題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎題3.C【解析】
將復數化成標準形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數,所以且,解得.故選:C【點睛】本題考查復數的基本定義,屬基礎題.4.C【解析】
先根據是奇函數,排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數,故排除A,B,又,故選:C【點睛】本題主要考查函數的圖象,還考查了理解辨析的能力,屬于基礎題.5.D【解析】
利用等差數列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.6.C【解析】
由題意,(1)中,根據全稱命題與存在性命題的關系,即可判定是正確的;(2)中,根據正態分布曲線的性質,即可判定是正確的;(3)中,由回歸直線方程的性質和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據全稱命題與存在性命題的關系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態分布曲線的性質,可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件.【點睛】本題主要考查了命題的真假判定及應用,其中解答中熟記含有量詞的否定、正態分布曲線的性質、回歸直線方程的性質,以及基本不等式的應用等知識點的應用,逐項判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.7.B【解析】
利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【詳解】設拋物線的焦點為F,設點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【點睛】本題考查拋物線的定義、標準方程,以及簡單性質的應用,利用拋物線的定義是解題的關鍵.8.A【解析】分析:設三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內的概率即可得出結論.解析:設三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內的概率為.落在黃色圖形內的圖釘數大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構成的總區域和所求事件構成的區域轉化為幾何圖形,并加以度量.(1)一般地,一個連續變量可建立與長度有關的幾何概型,只需把這個變量放在數軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序實數對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關的幾何概型;(3)若一個隨機事件需要用三個連續變量來描述,則可用這三個變量組成的有序數組來表示基本事件,利用空間直角坐標系即可建立與體積有關的幾何概型.9.B【解析】
作出約束條件的可行域,在可行域內求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實數滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當直線經過點時,截距最小,故,即的最小值為.故選:B【點睛】本題考查了簡單的線性規劃問題,解題的關鍵是作出可行域、理解目標函數的意義,屬于基礎題.10.D【解析】
根據復數運算,即可容易求得結果.【詳解】.故選:D.【點睛】本題考查復數的四則運算,屬基礎題.11.A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.12.D【解析】
先根據三視圖還原幾何體是一個四棱錐,根據三視圖的數據,計算各棱的長度.【詳解】根據三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出準線,過作準線的垂線,利用拋物線的定義把拋物線點到焦點的距離轉化為點到準線的距離,利用平面幾何知識計算出直線的斜率.【詳解】設是準線,過作于,過作于,過作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點睛】本題考查拋物線的焦點弦問題,解題關鍵是利用拋物線的定義,把拋物線上點到焦點距離轉化為該點到準線的距離,用平面幾何方法求解.14.【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當且僅當m=n時取等號.∴則的最小值是4.故答案為:4.【點睛】本題考查了圓的標準方程、“乘1法”和基本不等式的性質,屬于基礎題.15.-1【解析】
由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數,∴,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了復數的概念和運算,屬于基礎題.16.10【解析】
作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)1.【解析】
(1)利用參數方程、普通方程、極坐標方程間的互化公式即可;(2),,由(1)通過計算得到,即最大值為1.【詳解】(1)將曲線C的參數方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標方程為,顯然直線l與曲線C相交的兩點中,必有一個為原點O,不妨設O與A重合,即.(2)不妨設,,則面積為當,即取時,.【點睛】本題考查參數方程、普通方程、極坐標方程間的互化,三角形面積的最值問題,是一道容易題.18.(1)見解析(2)需要,見解析【解析】
(1)由零件的長度服從正態分布且相互獨立,零件的長度滿足即為合格,則每一個零件的長度合格的概率為,滿足二項分布,利用補集的思想求得,再根據公式求得;(2)由題可得不合格率為,檢查的成本為,求出不檢查時損失的期望,與成本作差,再與0比較大小即可判斷.【詳解】(1),由于滿足二項分布,故.(2)由題意可知不合格率為,若不檢查,損失的期望為;若檢查,成本為,由于,當充分大時,,所以為了使損失盡量小,小張需要檢查其余所有零件.【點睛】本題考查正態分布的應用,考查二項分布的期望,考查補集思想的應用,考查分析能力與數據處理能力.19.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由正弦定理邊化角,再結合轉化即可求解;(Ⅱ)可設,由,再由余弦定理解得,對中,由余弦定理有,通過勾股定理逆定理可得,進而得解【詳解】(Ⅰ)由正弦定理得.而.由以上兩式得,即.由于,所以,又由于,得.(Ⅱ)設,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【點睛】本題考查正弦定理和余弦定理的綜合運用,屬于中檔題20.(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區間內恰有一個零點,轉化為在區間內恰有兩個零點,由(1)的結論對分類討論,根據單調性,結合零點存在性定理,即可求出結論.【詳解】(1)由題意得,則,當函數在區間上單調遞增時,在區間上恒成立.∴(其中),解得.當函數在區間上單調遞減時,在區間上恒成立,∴(其中),解得.綜上所述,實數的取值范圍是.(2).由,知在區間內恰有一個零點,設該零點為,則在區間內不單調.∴在區間內存在零點,同理在區間內存在零點.∴在區間內恰有兩個零點.由(1)易知,當時,在區間上單調遞增,故在區間內至多有一個零點,不合題意.當時,在區間上單調遞減,故在區間內至多有一個零點,不合題意,∴.令,得,∴函數在區間上單凋遞減,在區間上單調遞增.記的兩個零點為,∴,必有.由,得.∴又∵,∴.綜上所述,實數的取值范圍為.【點睛】本題考查導數的綜合應用,涉及到函數的單調性、零點問題,意在考查直觀想象、邏輯推理、數學計算能力,屬于較難題.21.(1),證明見解析;(2)【解析】
(1)首先利用賦值法求出的值,進一步利用定義求出數列的通項公式;(2)首先利用疊乘法求出數列的通項公式,進一步利用數列的單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合同協議入伙協議
- 廠房房屋建筑合同
- 營銷代理合作協議條款及細則
- 拆遷工程居間合同
- 犬只配種協議書
- 比賽培訓協議書
- 運動員訓練協議合同
- 水源借用協議書
- 日語框架協議書
- 濱州港口協議書
- 新版導師制度課件
- 室內設計綜合施工圖制作教案
- 紫色卡通萬圣節節日活動策劃PPT模板
- 公司送電工作票
- 《跨境電商美工實務》完整版課件全套ppt教學教程-最全電子講義(最新)
- 美國藥品批發行業發展歷程譯稿
- 十字頭零件的加工工藝規程及精車外圓工裝夾具畢業設計(機械CAD圖紙)
- 含公式新財務報表模板 包括:三大報表、所有者權益變動表、和相關指標計算
- 第二套全國中小學校園集體舞圖解
- 移動通信終端NS_IOT測試解析
- 臨床免疫學檢驗技術(共64頁).ppt
評論
0/150
提交評論