




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省當陽市第二高級中學2025屆第二學期綜合練習(三模)高三數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知全集,則集合的子集個數為()A. B. C. D.2.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.3.已知函數,且的圖象經過第一、二、四象限,則,,的大小關系為()A. B.C. D.4.劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.5.已知定義在上的函數,,,,則,,的大小關系為()A. B. C. D.6.若復數滿足(為虛數單位),則其共軛復數的虛部為()A. B. C. D.7.若滿足,且目標函數的最大值為2,則的最小值為()A.8 B.4 C. D.68.函數的部分圖像如圖所示,若,點的坐標為,若將函數向右平移個單位后函數圖像關于軸對稱,則的最小值為()A. B. C. D.9.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立10.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.611.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.12.觀察下列各式:,,,,,,,,根據以上規律,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位向量的夾角為,則=_________.14.拋物線的焦點坐標為______.15.若的展開式中只有第六項的二項式系數最大,則展開式中各項的系數和是________.16.的二項展開式中,含項的系數為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是遞增的等差數列,,是方程的根.(1)求的通項公式;(2)求數列的前項和.18.(12分)已知{an}是一個公差大于0的等差數列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項公式;(Ⅱ)若數列{bn}滿足:…,求{bn}的前n項和.19.(12分)已知函數.(1)求函數的最小正周期以及單調遞增區間;(2)已知,若,,,求的面積.20.(12分)已知函數(為實常數).(1)討論函數在上的單調性;(2)若存在,使得成立,求實數的取值范圍.21.(12分)已知函數.(1)求證:當時,;(2)若對任意存在和使成立,求實數的最小值.22.(10分)已知等差數列的前n項和為,等比數列的前n項和為,且,,.(1)求數列與的通項公式;(2)求數列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先求B.再求,求得則子集個數可求【詳解】由題=,則集合,故其子集個數為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數,熟練掌握各自的定義是解本題的關鍵,是基礎題2、B【解析】
由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題3、C【解析】
根據題意,得,,則為減函數,從而得出函數的單調性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經過第一、二、四象限,所以,,所以函數為減函數,函數在上單調遞減,在上單調遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數的單調性比較大小,還考查化簡能力和轉化思想.4、A【解析】
設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.5、D【解析】
先判斷函數在時的單調性,可以判斷出函數是奇函數,利用奇函數的性質可以得到,比較三個數的大小,然后根據函數在時的單調性,比較出三個數的大小.【詳解】當時,,函數在時,是增函數.因為,所以函數是奇函數,所以有,因為,函數在時,是增函數,所以,故本題選D.【點睛】本題考查了利用函數的單調性判斷函數值大小問題,判斷出函數的奇偶性、單調性是解題的關鍵.6、D【解析】
由已知等式求出z,再由共軛復數的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數=-1+,虛部為1故選D.【點睛】本題考查復數代數形式的乘除運算和共軛復數的基本概念,屬于基礎題.7、A【解析】
作出可行域,由,可得.當直線過可行域內的點時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當直線過可行域內的點時,最大,即最大,最大值為2.解方程組,得..,當且僅當,即時,等號成立.的最小值為8.故選:.【點睛】本題考查簡單的線性規劃,考查基本不等式,屬于中檔題.8、B【解析】
根據圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數圖象關于軸對稱,求得的最小值.【詳解】由于,函數最高點與最低點的高度差為,所以函數的半個周期,所以,又,,則有,可得,所以,將函數向右平移個單位后函數圖像關于軸對稱,即平移后為偶函數,所以的最小值為1,故選:B.【點睛】該題主要考查三角函數的圖象和性質,根據圖象求出函數的解析式是解決該題的關鍵,要求熟練掌握函數圖象之間的變換關系,屬于簡單題目.9、D【解析】
取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.10、C【解析】
根據題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當且僅當時取“=”號.
答案:C【點睛】本題考查基本不等式的應用,“1”的應用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是首先要判斷參數是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最小);三相等是最后一定要驗證等號能否成立,屬于基礎題.11、D【解析】
先求出球心到四個支點所在球的小圓的距離,再加上側面三角形的高,即可求解.【詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質可得,又由到底面的距離即為側面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點睛】本題主要考查了空間幾何體的結構特征,以及球的性質的綜合應用,著重考查了數形結合思想,以及推理與計算能力,屬于基礎題.12、B【解析】
每個式子的值依次構成一個數列,然后歸納出數列的遞推關系后再計算.【詳解】以及數列的應用根據題設條件,設數字,,,,,,,構成一個數列,可得數列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關鍵是通過數列的項歸納出遞推關系,從而可確定數列的一些項.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因為單位向量的夾角為,所以,所以==.14、【解析】
變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.15、【解析】
由題意得出展開式中共有11項,;再令求得展開式中各項的系數和.【詳解】由的展開式中只有第六項的二項式系數最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數和的求法,屬于基礎題.16、【解析】
寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數列的通項公式即可得出;(2)利用“錯位相減法”、等比數列的前項和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設數列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項公式為an=n+1.(2)設的前n項和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點:等差數列的性質;數列的求和.【方法點晴】本題主要考查了等差數列的通項公式、“錯位相減法”、等比數列的前項和公式、一元二次方程的解法等知識點的綜合應用,解答中方程的兩根為,由題意得,即可求解數列的通項公式,進而利用錯位相減法求和是解答的關鍵,著重考查了學生的推理能力與運算能力,屬于中檔試題.18、(I);(Ⅱ)【解析】
(Ⅰ)設等差數列的公差為,則依題設.由,可得.由,得,可得.所以.可得.(Ⅱ)設,則.即,可得,且.所以,可知.所以,所以數列是首項為4,公比為2的等比數列.所以前項和.考點:等差數列通項公式、用數列前項和求數列通項公式.19、(1)最小正周期為,單調遞增區間為;(2).【解析】
(1)利用三角恒等變換思想化簡函數的解析式為,利用正弦型函數的周期公式可求得函數的最小正周期,解不等式可求得該函數的單調遞增區間;(2)由求得,由得出或,分兩種情況討論,結合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數的最小正周期為,由得,因此,函數的單調遞增區間為;(2)由,得,或,或,,,又,,即.①當時,即,則由,,得,則,此時,的面積為;②當時,則,即,則由,解得,,.綜上,的面積為.【點睛】本題考查正弦型函數的周期和單調區間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形的應用,考查計算能力,屬于中等題.20、(1)見解析(2)【解析】
(1)分類討論的值,利用導數證明單調性即可;(2)利用導數分別得出,,時,的最小值,即可得出實數的取值范圍.【詳解】(1),.當即時,,,此時,在上單調遞增;當即時,時,,在上單調遞減;時,,在上單調遞增;當即時,,,此時,在上單調遞減;(2)當時,因為在上單調遞增,所以的最小值為,所以當時,在上單調遞減,在上單調遞增所以的最小值為.因為,所以,.所以,所以.當時,在上單調遞減所以的最小值為因為,所以,所以,綜上,.【點睛】本題主要考查了利用導數證明函數的單調性以及利用導數研究函數的存在性問題,屬于中檔題.21、(1)見解析;(2)【解析】
(1)不等式等價于,設,利用導數可證恒成立,從而原不等式成立.(2)由題設條件可得在上有兩個不同零點,且,利用導數討論的單調性后可得其最小值,結合前述的集合的包含關系可得的取值范圍.【詳解】(1)設,則,當時,由,所以在上是減函數,所以,故.因為,所以,所以當時,.(2)由(1)當時,;任意,存在和使成立,所以在上有兩個不同零點,且,(1)當時,在上為減函數,不合題意;(2)當時,,由題意知在上不單調,所以,即,當時,,時,,所以在上遞減,在上遞增,所以,解得,因為,所以成立,下面證明存在,使得,取,先證明,即證,令,則在時恒成立,所以成立,因為,所以時命題成立.因為,所以.故實數的最小值為.【點睛】本題考查導數在不等式恒成立、等式能成立中的應用,前者注意將欲證不等式合理變形,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上市公司股權轉讓合同模板
- 2025簡易車間租賃合同協議書模板
- 2025年國際工程承包項目貸款合同協議書范本
- 2025年學校教學樓翻新工程合同范本
- 2025年網絡廣告投放合同協議書
- 《教學課件:探索數字信號處理中的濾波技術》
- 家庭醫療服務協議書
- 合同續簽補充協議
- 律師多人合伙協議書
- 授信協議合同
- 家族辦公室公司章程
- 2024年度保密教育線上培訓考試題庫新版
- 【9道三模】2024年安徽省合肥市蜀山區中考三模道德與法治試題(含解析)
- 敲墻搬運合同范本
- (高清版)JTGT 5190-2019 農村公路養護技術規范
- 小學生必背古詩“飛花令”200句
- 2024年3月青少年軟件編程Scratch圖形化等級考試試卷一級真題(含答案)
- 浙江省強基聯盟聯考2023-2024學年高一下學期5月聯考語文試題(含答案)
- 2024年福建省漳州市中考二模化學試題
- 華為綠色運營管理與可持續發展
- 2024年輔警招聘考試試題庫含完整答案(各地真題)
評論
0/150
提交評論