




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山東省德州市一中高考押題預(yù)測(cè)卷(數(shù)學(xué)試題理)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線(xiàn)的焦點(diǎn)為,過(guò)焦點(diǎn)的直線(xiàn)與拋物線(xiàn)分別交于、兩點(diǎn),與軸的正半軸交于點(diǎn),與準(zhǔn)線(xiàn)交于點(diǎn),且,則()A. B.2 C. D.32.如下的程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.153.若的展開(kāi)式中的系數(shù)為150,則()A.20 B.15 C.10 D.254.《九章算術(shù)》有如下問(wèn)題:“今有金箠,長(zhǎng)五尺,斬本一尺,重四斤;斬末一尺,重二斤,問(wèn)次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長(zhǎng)五尺在粗的一端截下一尺,重斤;在細(xì)的一端截下一尺,重斤,問(wèn)各尺依次重多少?”按這一問(wèn)題的顆設(shè),假設(shè)金箠由粗到細(xì)各尺重量依次成等差數(shù)列,則從粗端開(kāi)始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤5.已知函數(shù)在上可導(dǎo)且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、6.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.7.已知半徑為2的球內(nèi)有一個(gè)內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.8.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或99.在菱形中,,,,分別為,的中點(diǎn),則()A. B. C.5 D.10.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.11.已知雙曲線(xiàn)的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,則雙曲線(xiàn)的離心率為()A. B. C.3 D.412.已知為一條直線(xiàn),為兩個(gè)不同的平面,則下列說(shuō)法正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則繞所在直線(xiàn)旋轉(zhuǎn)一周所形成的幾何體的表面積為_(kāi)_____________.14.命題“”的否定是______.15.已知雙曲線(xiàn)的左、右焦點(diǎn)和點(diǎn)為某個(gè)等腰三角形的三個(gè)頂點(diǎn),則雙曲線(xiàn)C的離心率為_(kāi)_______.16.在平面直角坐標(biāo)系中,雙曲線(xiàn)的焦距為,若過(guò)右焦點(diǎn)且與軸垂直的直線(xiàn)與兩條漸近線(xiàn)圍成的三角形面積為,則雙曲線(xiàn)的離心率為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱錐中,,是的中點(diǎn),點(diǎn)在上,平面,平面平面,為銳角三角形,求證:(1)是的中點(diǎn);(2)平面平面.18.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大小;(2)在棱上確定一點(diǎn),使二面角的平面角的余弦值為.19.(12分)已知函數(shù),函數(shù)().(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.(3)證明:當(dāng)時(shí),.20.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):若分?jǐn)?shù)不低于95分,則稱(chēng)該員工的成績(jī)?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績(jī)“優(yōu)秀”的概率;(2)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問(wèn)題.組別分組頻數(shù)頻率1234①估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);②若從所有員工中任選3人,記表示抽到的員工成績(jī)?yōu)椤皟?yōu)秀”的人數(shù),求的分布列和數(shù)學(xué)期望.21.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù)(,)滿(mǎn)足下列3個(gè)條件中的2個(gè)條件:①函數(shù)的周期為;②是函數(shù)的對(duì)稱(chēng)軸;③且在區(qū)間上單調(diào).(Ⅰ)請(qǐng)指出這二個(gè)條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
過(guò)點(diǎn)作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為,與軸交于點(diǎn),由和拋物線(xiàn)的定義可求得,利用拋物線(xiàn)的性質(zhì)可構(gòu)造方程求得,進(jìn)而求得結(jié)果.【詳解】過(guò)點(diǎn)作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為,與軸交于點(diǎn),由拋物線(xiàn)解析式知:,準(zhǔn)線(xiàn)方程為.,,,,由拋物線(xiàn)定義知:,,,.由拋物線(xiàn)性質(zhì)得:,解得:,.故選:.【點(diǎn)睛】本題考查拋物線(xiàn)定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線(xiàn)的定義和焦半徑所滿(mǎn)足的等式.2.A【解析】
根據(jù)題意可知最后計(jì)算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計(jì)算的結(jié)果為的最大公約數(shù),按流程圖計(jì)算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點(diǎn)睛】本題考查的是利用更相減損術(shù)求兩個(gè)數(shù)的最大公約數(shù),難度較易.3.C【解析】
通過(guò)二項(xiàng)式展開(kāi)式的通項(xiàng)分析得到,即得解.【詳解】由已知得,故當(dāng)時(shí),,于是有,則.故選:C【點(diǎn)睛】本題主要考查二項(xiàng)式展開(kāi)式的通項(xiàng)和系數(shù)問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4.B【解析】
依題意,金箠由粗到細(xì)各尺重量構(gòu)成一個(gè)等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【詳解】設(shè)金箠由粗到細(xì)各尺重量依次所成得等差數(shù)列為,設(shè)首項(xiàng),則,公差,.故選B【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.5.A【解析】
設(shè),利用導(dǎo)數(shù)和題設(shè)條件,得到,得出函數(shù)在R上單調(diào)遞增,得到,進(jìn)而變形即可求解.【詳解】由題意,設(shè),則,又由,所以,即函數(shù)在R上單調(diào)遞增,則,即,變形可得.故選:A.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及其應(yīng)用,以及利用單調(diào)性比較大小,其中解答中根據(jù)題意合理構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性求解是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與計(jì)算能力,屬于中檔試題.6.D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)椋杂校菏欠匠痰亩?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.7.D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點(diǎn)睛】本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).8.C【解析】
由題意利用兩個(gè)向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點(diǎn)睛】本題主要考查兩個(gè)向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.9.B【解析】
據(jù)題意以菱形對(duì)角線(xiàn)交點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運(yùn)算計(jì)算出結(jié)果.【詳解】設(shè)與交于點(diǎn),以為原點(diǎn),的方向?yàn)檩S,的方向?yàn)檩S,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點(diǎn)睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問(wèn)題,難度一般.長(zhǎng)方形、正方形、菱形中的向量數(shù)量積問(wèn)題,如果直接計(jì)算較麻煩可考慮用建系的方法求解.10.C【解析】
將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.11.A【解析】
根據(jù)題意,由拋物線(xiàn)的方程可得其焦點(diǎn)坐標(biāo),由此可得雙曲線(xiàn)的焦點(diǎn)坐標(biāo),由雙曲線(xiàn)的幾何性質(zhì)可得,解可得,由離心率公式計(jì)算可得答案.【詳解】根據(jù)題意,拋物線(xiàn)的焦點(diǎn)為,則雙曲線(xiàn)的焦點(diǎn)也為,即,則有,解可得,雙曲線(xiàn)的離心率.故選:A.【點(diǎn)睛】本題主要考查雙曲線(xiàn)、拋物線(xiàn)的標(biāo)準(zhǔn)方程,關(guān)鍵是求出拋物線(xiàn)焦點(diǎn)的坐標(biāo),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.12.D【解析】A.若,則或,故A錯(cuò)誤;B.若,則或故B錯(cuò)誤;C.若,則或,或與相交;D.若,則,正確.故選D.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題知該旋轉(zhuǎn)體為兩個(gè)倒立的圓錐底對(duì)底組合在一起,根據(jù)圓錐側(cè)面積計(jì)算公式可得.【詳解】解:由題知該旋轉(zhuǎn)體為兩個(gè)倒立的圓錐底對(duì)底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.【點(diǎn)睛】本題考查旋轉(zhuǎn)體的表面積計(jì)算問(wèn)題,屬于基礎(chǔ)題.14.,【解析】
根據(jù)特稱(chēng)命題的否定為全稱(chēng)命題得到結(jié)果即可.【詳解】解:因?yàn)樘胤Q(chēng)命題的否定是全稱(chēng)命題,所以,命題,則該命題的否定是:,故答案為:,.【點(diǎn)睛】本題考查全稱(chēng)命題與特稱(chēng)命題的否定關(guān)系,屬于基礎(chǔ)題.15.【解析】
由等腰三角形及雙曲線(xiàn)的對(duì)稱(chēng)性可知或,進(jìn)而利用兩點(diǎn)間距離公式求解即可.【詳解】由題設(shè)雙曲線(xiàn)的左、右焦點(diǎn)分別為,,因?yàn)樽蟆⒂医裹c(diǎn)和點(diǎn)為某個(gè)等腰三角形的三個(gè)頂點(diǎn),當(dāng)時(shí),,由可得,等式兩邊同除可得,解得(舍);當(dāng)時(shí),,由可得,等式兩邊同除可得,解得,故答案為:【點(diǎn)睛】本題考查求雙曲線(xiàn)的離心率,考查雙曲線(xiàn)的幾何性質(zhì)的應(yīng)用,考查分類(lèi)討論思想.16.【解析】
利用即可建立關(guān)于的方程.【詳解】設(shè)雙曲線(xiàn)右焦點(diǎn)為,過(guò)右焦點(diǎn)且與軸垂直的直線(xiàn)與兩條漸近線(xiàn)分別交于兩點(diǎn),則,,由已知,,即,所以,離心率.故答案為:【點(diǎn)睛】本題考查求雙曲線(xiàn)的離心率,做此類(lèi)題的關(guān)鍵是建立的方程或不等式,是一道容易題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;【解析】
(1)推導(dǎo)出,由是的中點(diǎn),能證明是有中點(diǎn).(2)作于點(diǎn),推導(dǎo)出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點(diǎn),是有中點(diǎn).(2)在三棱錐中,是銳角三角形,在中,可作于點(diǎn),平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【點(diǎn)睛】本題考查線(xiàn)段中點(diǎn)的證明,考查面面垂直的證明,考查空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.18.(1)(2)【解析】試題分析:(1)因?yàn)锳B⊥AC,A1B⊥平面ABC,所以以A為坐標(biāo)原點(diǎn),分別以AC、AB所在直線(xiàn)分別為x軸和y軸,以過(guò)A,且平行于BA1的直線(xiàn)為z軸建立空間直角坐標(biāo)系,由AB=AC=A1B=2求出所要用到的點(diǎn)的坐標(biāo),求出棱AA1與BC上的兩個(gè)向量,由向量的夾角求棱AA1與BC所成的角的大小;
(2)設(shè)棱B1C1上的一點(diǎn)P,由向量共線(xiàn)得到P點(diǎn)的坐標(biāo),然后求出兩個(gè)平面PAB與平面ABA1的一個(gè)法向量,把二面角P-AB-A1的平面角的余弦值為,轉(zhuǎn)化為它們法向量所成角的余弦值,由此確定出P點(diǎn)的坐標(biāo).試題解析:解(1)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,則,.,故與棱所成的角是.(2)為棱中點(diǎn),設(shè),則.設(shè)平面的法向量為,,則,故而平面的法向量是,則,解得,即為棱中點(diǎn),其坐標(biāo)為.點(diǎn)睛:本題主要考查線(xiàn)面垂直的判定與性質(zhì),以及利用空間向量求二面角.空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線(xiàn)的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線(xiàn)垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.19.(1)答案不唯一,具體見(jiàn)解析(2)證明見(jiàn)解析(3)證明見(jiàn)解析【解析】
(1)求出的定義域,導(dǎo)函數(shù),對(duì)參數(shù)、分類(lèi)討論得到答案.(2)設(shè)函數(shù),求導(dǎo)說(shuō)明函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域?yàn)椋?dāng),時(shí),,則在上單調(diào)遞增;當(dāng),時(shí),令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增;當(dāng),時(shí),,則在上單調(diào)遞減;當(dāng),時(shí),令,得,令,得,則在上單調(diào)遞增,在上單調(diào)遞減;(2)證明:設(shè)函數(shù),則.因?yàn)椋裕瑒t,從而在上單調(diào)遞減,所以,即.(3)證明:當(dāng)時(shí),.由(1)知,,所以,即.當(dāng)時(shí),,,則,即,又,所以,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,屬于難題.20.(1);(2)①82,②分布列見(jiàn)解析,【解析】
(1)從20人中任取3人共有種結(jié)果,恰有1人成績(jī)“優(yōu)秀”共有種結(jié)果,利用古典概型的概率計(jì)算公式計(jì)算即可;(2)①平均數(shù)的估計(jì)值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項(xiàng)分布,不是超幾何分布,利用二項(xiàng)分布的分布列及期望公式求解即可.【詳解】(1)設(shè)從20人中任取3人恰有1人成績(jī)“優(yōu)秀”為事件,則,所以,恰有1人“優(yōu)秀”的概率為.(2)組別分組頻數(shù)頻率120.01260.03380.04440.02
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年醫(yī)學(xué)信息技術(shù)產(chǎn)品項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 離岸公司注冊(cè)、國(guó)際貿(mào)易仲裁及爭(zhēng)議解決協(xié)議
- 行李意外損壞賠償追加協(xié)議
- 2025年中國(guó)杯壺產(chǎn)品行業(yè)市場(chǎng)前景預(yù)測(cè)及投資價(jià)值評(píng)估分析報(bào)告
- 2025年中國(guó)薄膜儀器行業(yè)市場(chǎng)前景預(yù)測(cè)及投資價(jià)值評(píng)估分析報(bào)告
- 跨界合作渠道拓展伙伴權(quán)益分配協(xié)議
- 航拍影像作品授權(quán)使用及衍生品開(kāi)發(fā)補(bǔ)充協(xié)議
- 知識(shí)產(chǎn)權(quán)交割及后續(xù)產(chǎn)品研發(fā)與市場(chǎng)推廣協(xié)議
- 數(shù)據(jù)安全防護(hù)技術(shù)支持服務(wù)合同(含風(fēng)險(xiǎn)評(píng)估)
- 淘寶直播基地直播基地品牌合作與市場(chǎng)營(yíng)銷(xiāo)策劃協(xié)議
- 《甲狀腺髓樣癌》課件
- 文書(shū)模板-《因病申請(qǐng)低保申請(qǐng)書(shū)》
- 《分層裝配支撐鋼框架房屋技術(shù)規(guī)程》
- 2024網(wǎng)絡(luò)安全技術(shù)技能人才職業(yè)能力圖譜
- 新:惡性腫瘤免疫治療技術(shù)應(yīng)用指南
- 《焊接機(jī)器人》課件
- DB52T 1211-2017 電站汽輪機(jī)數(shù)字電液控制系統(tǒng)并網(wǎng)試驗(yàn)及檢測(cè)指標(biāo)
- 醫(yī)療行業(yè)招標(biāo)代理服務(wù)方案
- 2024年賓館衛(wèi)生管理制度(四篇)
- 【核心素養(yǎng)目標(biāo)】數(shù)學(xué)人教版八年級(jí)上冊(cè)11.3.1 多邊形 教案
- 老年舞蹈隊(duì)免責(zé)協(xié)議書(shū)范文
評(píng)論
0/150
提交評(píng)論