陜西省度西安中學2025年高三下學期開學測試數學試題_第1頁
陜西省度西安中學2025年高三下學期開學測試數學試題_第2頁
陜西省度西安中學2025年高三下學期開學測試數學試題_第3頁
陜西省度西安中學2025年高三下學期開學測試數學試題_第4頁
陜西省度西安中學2025年高三下學期開學測試數學試題_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省度西安中學2025年高三下學期開學測試數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數的虛部為()A. B. C.2 D.2.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.13.已知函數在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、4.根據如圖所示的程序框圖,當輸入的值為3時,輸出的值等于()A.1 B. C. D.5.已知函數的圖像上有且僅有四個不同的點關于直線的對稱點在的圖像上,則實數的取值范圍是()A. B. C. D.6.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.7.三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為()A. B. C. D.8.已知復數,則的虛部為()A. B. C. D.19.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.10.已知函數,,,,則,,的大小關系為()A. B. C. D.11.已知函數,則下列結論中正確的是①函數的最小正周期為;②函數的圖象是軸對稱圖形;③函數的極大值為;④函數的最小值為.A.①③ B.②④C.②③ D.②③④12.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等比數列中,,則________.14.已知點M是曲線y=2lnx+x2﹣3x上一動點,當曲線在M處的切線斜率取得最小值時,該切線的方程為_______.15.若函數恒成立,則實數的取值范圍是_____.16.在△ABC中,()⊥(>1),若角A的最大值為,則實數的值是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.18.(12分)在直角坐標系中,曲線的參數方程為(為參數,),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.19.(12分)已知曲線的參數方程為(為參數).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.20.(12分)己知函數.(1)當時,求證:;(2)若函數,求證:函數存在極小值.21.(12分)已知,.(1)解;(2)若,證明:.22.(10分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據復數的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數的除法運算和復數的概念.2、A【解析】

由題意得到關于的等式,結合對數的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數學應用意識?信息處理能力?閱讀理解能力以及指數對數運算.3、A【解析】

設,利用導數和題設條件,得到,得出函數在R上單調遞增,得到,進而變形即可求解.【詳解】由題意,設,則,又由,所以,即函數在R上單調遞增,則,即,變形可得.故選:A.【點睛】本題主要考查了利用導數研究函數的單調性及其應用,以及利用單調性比較大小,其中解答中根據題意合理構造新函數,利用新函數的單調性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.4、C【解析】

根據程序圖,當x<0時結束對x的計算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時x>0繼續運行,x=1-2=-1<0,程序運行結束,得,故選C.【點睛】本題考查程序框圖,是基礎題.5、A【解析】

可將問題轉化,求直線關于直線的對稱直線,再分別討論兩函數的增減性,結合函數圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據題意畫出函數大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結合圖像可知,即,故選:A【點睛】本題考查數形結合思想求解函數交點問題,導數研究函數增減性,找準臨界是解題的關鍵,屬于中檔題6、C【解析】

判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎題.7、A【解析】分析:設三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內的概率即可得出結論.解析:設三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內的概率為.落在黃色圖形內的圖釘數大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構成的總區域和所求事件構成的區域轉化為幾何圖形,并加以度量.(1)一般地,一個連續變量可建立與長度有關的幾何概型,只需把這個變量放在數軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序實數對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關的幾何概型;(3)若一個隨機事件需要用三個連續變量來描述,則可用這三個變量組成的有序數組來表示基本事件,利用空間直角坐標系即可建立與體積有關的幾何概型.8、C【解析】

先將,化簡轉化為,再得到下結論.【詳解】已知復數,所以,所以的虛部為-1.故選:C【點睛】本題主要考查復數的概念及運算,還考查了運算求解的能力,屬于基礎題.9、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據三視圖判斷幾何體的形狀及相關幾何量的數據是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.10、B【解析】

可判斷函數在上單調遞增,且,所以.【詳解】在上單調遞增,且,所以.故選:B【點睛】本題主要考查了函數單調性的判定,指數函數與對數函數的性質,利用單調性比大小等知識,考查了學生的運算求解能力.11、D【解析】

因為,所以①不正確;因為,所以,,所以,所以函數的圖象是軸對稱圖形,②正確;易知函數的最小正周期為,因為函數的圖象關于直線對稱,所以只需研究函數在上的極大值與最小值即可.當時,,且,令,得,可知函數在處取得極大值為,③正確;因為,所以,所以函數的最小值為,④正確.故選D.12、C【解析】

利用線線、線面、面面相應的判定與性質來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質定理,是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

設等比數列的公比為,再根據題意用基本量法求解公比,進而利用等比數列項之間的關系得即可.【詳解】設等比數列的公比為.由,得,解得.又由,得.則.故答案為:1【點睛】本題主要考查了等比數列基本量的求解方法,屬于基礎題.14、【解析】

先求導數可得切線斜率,利用基本不等式可得切點橫坐標,從而可得切線方程.【詳解】,,=1時有最小值1,此時M(1,﹣2),故切線方程為:,即.故答案為:.【點睛】本題主要考查導數的幾何意義,切點處的導數值等于切線的斜率是求解的關鍵,側重考查數學運算的核心素養.15、【解析】

若函數恒成立,即,求導得,在三種情況下,分別討論函數單調性,求出每種情況時的,解關于的不等式,再取并集,即得。【詳解】由題意得,只要即可,,當時,令解得,令,解得,單調遞減,令,解得,單調遞增,故在時,有最小值,,若恒成立,則,解得;當時,恒成立;當時,,單調遞增,,不合題意,舍去.綜上,實數的取值范圍是.故答案為:【點睛】本題考查恒成立條件下,求參數的取值范圍,是常考題型。16、1【解析】

把向量進行轉化,用表示,利用基本不等式可求實數的值.【詳解】,解得=1.故答案為:1.【點睛】本題主要考查平面向量的數量積應用,綜合了基本不等式,側重考查數學運算的核心素養.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、證明見解析;證明見解析.【解析】

利用線面平行的判定定理求證即可;為中點,為中點,可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點,為中點,,又平面,平面,平面;證明:為中點,為中點,,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點睛】本題考查線面平行和面面垂直的判定定理的應用,屬于基礎題.18、(1),以為圓心,為半徑的圓;(2)【解析】

(1)根據極坐標與直角坐標的互化公式,直接得到的直角坐標方程并判斷形狀;(2)聯立直線參數方程與的直角坐標方程,根據直線參數方程中的幾何意義結合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設點,所對應的參數分別為,,則,.,解得,則.【點睛】本題考查極坐標與直角坐標的互化以及根據直線參數方程中的幾何意義求值,難度一般.(1)極坐標與直角坐標的互化公式:;(2)若要使用直線參數方程中的幾何意義,要注意將直線的標準參數方程代入到對應曲線的直角坐標方程中,構成關于的一元二次方程并結合韋達定理形式進行分析求解.19、(1)見解析;(2).【解析】試題分析:(1)利用平方法消去參數,即可得到的普通方程,兩邊同乘以利用即可得的直角坐標方程;(2)設直線的參數方程為(為參數),代入,利用韋達定理、直線參數方程的幾何意義以及三角函數的有界性可得結果.試題解析:(1)曲線的普通方程為,曲線的直角坐標方程為;(2)設直線的參數方程為(為參數)又直線與曲線:存在兩個交點,因此.聯立直線與曲線:可得則聯立直線與曲線:可得,則即20、(1)證明見解析(2)證明見解析【解析】

(1)求導得,由,且,得到,再利用函數在上單調遞減論證.(2)根據題意,求導,令,易知;,易知當時,,;當時,函數單調遞增,而,又,由零點存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因為,且,故,故函數在上單調遞減,故.(2)依題意,,令,則;而,可知當時,,故函數在上單調遞增,故當時,;當時,函數單調遞增,而,又,故,使得,故,使得,即函數單調遞增,即單調遞增;故當時,,故函數在上單調遞減,在上單調遞增,故當時,函數有極小值.【點睛】本題考查利用導數研究函數的性質,還考查推理論證能力以及函數與方程思想,屬于難題.21、(1);(2)見解析.【解析】

(1)在不等式兩邊平方化簡轉化為二次不等式,解此二次不等式即可得出結果;(2)利用絕對值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對值三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論