山東省濟寧市達標名校2025屆高考第七次適應性訓練數學試題_第1頁
山東省濟寧市達標名校2025屆高考第七次適應性訓練數學試題_第2頁
山東省濟寧市達標名校2025屆高考第七次適應性訓練數學試題_第3頁
山東省濟寧市達標名校2025屆高考第七次適應性訓練數學試題_第4頁
山東省濟寧市達標名校2025屆高考第七次適應性訓練數學試題_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省濟寧市達標名校2025屆高考第七次適應性訓練數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.2.已知函數,若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數的取值范圍為()A. B. C. D.3.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.4.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.5.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.6.已知實數,滿足,則的最大值等于()A.2 B. C.4 D.87.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.8.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.9.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.10.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.11.已知實數,,函數在上單調遞增,則實數的取值范圍是()A. B. C. D.12.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.電影《厲害了,我的國》于2018年3月正式登陸全國院線,網友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”《厲害了,我的國》正在召喚我們每一個人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看《厲害了,我的國》,并把標識為的四張電影票放在編號分別為1,2,3,4的四個不同的盒子里,讓四位好朋友進行猜測:甲說:第1個盒子里放的是,第3個盒子里放的是乙說:第2個盒子里放的是,第3個盒子里放的是丙說:第4個盒子里放的是,第2個盒子里放的是丁說:第4個盒子里放的是,第3個盒子里放的是小明說:“四位朋友你們都只說對了一半”可以預測,第4個盒子里放的電影票為_________14.已知實數滿足,則的最小值是______________.15.已知向量=(-4,3),=(6,m),且,則m=__________.16.已知數列是等比數列,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.18.(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點E,F是線段PC中點,G為線段EC中點.Ⅰ求證:平面PBD;Ⅱ求證:.19.(12分)已知奇函數的定義域為,且當時,.(1)求函數的解析式;(2)記函數,若函數有3個零點,求實數的取值范圍.20.(12分)[選修4-4:極坐標與參數方程]在直角坐標系中,曲線的參數方程為(是參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若射線與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值21.(12分)如圖,三棱柱中,底面是等邊三角形,側面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.22.(10分)在平面直角坐標系中,已知直線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的極坐標為,直線與曲線的交點為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.2、D【解析】

根據中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.3、D【解析】

由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,

∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,

設正方體的棱長為,則,∴.

取,連接,則共面,在中,設到的距離為,

設到平面的距離為,

.

故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.4、B【解析】

連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.5、C【解析】

由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內切球與外接球問題,由三視圖求幾何體的表面積,考查了學生的空間想象能力,屬于基礎題.6、D【解析】

畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據可行域求非線性目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.7、C【解析】

根據表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.8、B【解析】

由題意畫出圖形,設球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設球的半徑為,,,由,得.如圖:設三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側面積、體積,基本不等式等基礎知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數學轉化思想方法與數形結合的解題思想方法,是中檔題.9、C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關鍵,是基礎題.10、D【解析】

“是的充分不必要條件”等價于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點睛】利用原命題與其逆否命題的等價性,對是的充分不必要條件進行命題轉換,使問題易于求解.11、D【解析】

根據題意,對于函數分2段分析:當,由指數函數的性質分析可得①,當,由導數與函數單調性的關系可得,在上恒成立,變形可得②,再結合函數的單調性,分析可得③,聯立三個式子,分析可得答案.【詳解】解:根據題意,函數在上單調遞增,

當,若為增函數,則①,

當,若為增函數,必有在上恒成立,

變形可得:,

又由,可得在上單調遞減,則,

若在上恒成立,則有②,

若函數在上單調遞增,左邊一段函數的最大值不能大于右邊一段函數的最小值,則需有,③

聯立①②③可得:.

故選:D.【點睛】本題考查函數單調性的性質以及應用,注意分段函數單調性的性質.12、A【解析】

設,因為,得到,利用直線的斜率公式,得到,結合基本不等式,即可求解.【詳解】由題意,拋物線的焦點坐標為,設,因為,即線段的中點,所以,所以直線的斜率,當且僅當,即時等號成立,所以直線的斜率的最大值為1.故選:A.【點睛】本題主要考查了拋物線的方程及其應用,直線的斜率公式,以及利用基本不等式求最值的應用,著重考查了推理與運算能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13、A或D【解析】

分別假設每一個人一半是對的,然后分別進行驗證即可.【詳解】解:假設甲說:第1個盒子里面放的是是對的,則乙說:第3個盒子里面放的是是對的,丙說:第2個盒子里面放的是是對的,丁說:第4個盒子里面放的是是對的,由此可知第4個盒子里面放的是;假設甲說:第3個盒子里面放的是是對的,則丙說:第4個盒子里面放的是是對的,乙說:第2個盒子里面放的是是對的,丁說:第3個盒子里面放的是是對的,由此可知第4個盒子里面放的是.故第4個盒子里面放的電影票為或.故答案為:或【點睛】本題考查簡單的合情推理,考查推理論證能力、分析判斷能力、歸納總結能力,屬于中檔題.14、【解析】

先畫出不等式組對應的可行域,再利用數形結合分析解答得解.【詳解】畫出不等式組表示的可行域如圖陰影區域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當直線經過點時,直線的縱截距最小,目標函數取得最小值,且.故答案為:-8【點睛】本題主要考查線性規劃問題,意在考查學生對這些知識的理解掌握水平和數形結合分析能力.15、8.【解析】

利用轉化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標運算、平面向量的數量積、平面向量的垂直以及轉化與化歸思想的應用.屬于容易題.16、【解析】

根據等比數列通項公式,首先求得,然后求得.【詳解】設的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數列通項公式的基本量計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設,則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過作,則平面,即點到平面的距離,由是中點,得到到平面的距離,然后根據與平面所成的角的正弦值為求解.【詳解】(Ⅰ)取的中點,連接,由,,得三點共線,且,又,,所以平面,所以.(Ⅱ)設,,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過作,則平面,即點到平面的距離,因為是中點,所以為到平面的距離,因為與平面所成的角的正弦值為,即,解得.【點睛】本題主要考查線面垂直的判定定理,線面角的應用,還考查了轉化化歸的思想和空間想象運算求解的能力,屬于中檔題.18、(1)見解析;(2)見解析.【解析】分析:(1)先證明,再證明FG//平面PBD.(2)先證明平面,再證明BD⊥FG.詳解:證明:(1)連結PE,因為G.、F為EC和PC的中點,,又平面,平面,所以平面(II)因為菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因為平面,平面,且,平面,平面,∴BD⊥FG.點睛:(1)本題主要考查空間位置關系的證明,意在考查學生對這些基礎知識的掌握水平和空間想象轉化能力.(2)證明空間位置關系,一般有幾何法和向量法,本題利用幾何法比較方便.19、(1);(2)【解析】

(1)根據奇函數定義,可知;令則,結合奇函數定義即可求得時的解析式,進而得函數的解析式;(2)根據零點定義,可得,由函數圖像分析可知曲線與直線在第三象限必1個交點,因而需在第一象限有2個交點,將與聯立,由判別式及兩根之和大于0,即可求得的取值范圍.【詳解】(1)因為函數為奇函數,且,故;當時,,,則;故.(2)令,解得,畫出函數關系如下圖所示,要使曲線與直線有3個交點,則2個交點在第一象限,1個交點在第三象限,聯立,化簡可得,令,即,解得,所以實數的取值范圍為.【點睛】本題考查了根據函數奇偶性求解析式,分段函數圖像畫法,由函數零點個數求參數的取值范圍應用,數形結合的應用,屬于中檔題.20、(1)的極坐標方程為.曲線的直角坐標方程為.(2)【解析】

(1)先得到的一般方程,再由極坐標化直角坐標的公式得到一般方程,將代入得,得到曲線的直角坐標方程;(2)設點、的極坐標分別為,,將分別代入曲線、極坐標方程得:,,,之后進行化一,可得到最值,此時,可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標方程為.由得,將代入得,故曲線的直角坐標方程為.(2)設點、的極坐標分別為,,將分別代入曲線、極坐標方程得:,,則,其中為銳角,且滿足,,當時,取最大值,此時,【點睛】這個題目考查了參數方程化為普通方程的方法,極坐標化為直角坐標的方法,以及極坐標中極徑的幾何意義,極徑代表的是曲線上的點到極點的距離,在參數方程和極坐標方程中,能表示距離的量一個是極徑,一個是t的幾何意義,其中極徑多數用于過極點的曲線,而t的應用更廣泛一些.21、(1)見解析(2)【解析】

(1)連結BM,推導出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進而AA1⊥平面BCM,AA1⊥MB,推導出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導出△A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論