2025屆安徽省示范性高中培優聯盟高三下學期防疫期間“停課不停學”網上周考(二)數學試題_第1頁
2025屆安徽省示范性高中培優聯盟高三下學期防疫期間“停課不停學”網上周考(二)數學試題_第2頁
2025屆安徽省示范性高中培優聯盟高三下學期防疫期間“停課不停學”網上周考(二)數學試題_第3頁
2025屆安徽省示范性高中培優聯盟高三下學期防疫期間“停課不停學”網上周考(二)數學試題_第4頁
2025屆安徽省示范性高中培優聯盟高三下學期防疫期間“停課不停學”網上周考(二)數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省示范性高中培優聯盟高三下學期防疫期間“停課不停學”網上周考(二)數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數滿足,且,則不等式的解集為()A. B. C. D.2.已知等差數列中,,則()A.20 B.18 C.16 D.143.過雙曲線左焦點的直線交的左支于兩點,直線(是坐標原點)交的右支于點,若,且,則的離心率是()A. B. C. D.4.已知函數,,若對任意的,存在實數滿足,使得,則的最大值是()A.3 B.2 C.4 D.55.下列不等式正確的是()A. B.C. D.6.《周易》歷來被人們視作儒家群經之首,它表現了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數的思想方法.我們用近代術語解釋為:把陽爻“-”當作數字“1”,把陰爻“--”當作數字“0”,則八卦所代表的數表示如下:卦名符號表示的二進制數表示的十進制數坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數是()A.18 B.17 C.16 D.157.若集合,則=()A. B. C. D.8.已知函數的圖象如圖所示,則下列說法錯誤的是()A.函數在上單調遞減B.函數在上單調遞增C.函數的對稱中心是D.函數的對稱軸是9.已知復數z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.下列幾何體的三視圖中,恰好有兩個視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長寬高互不相等的長方體11.拋物線的焦點為,點是上一點,,則()A. B. C. D.12.已知為虛數單位,若復數滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知一個圓錐的底面積和側面積分別為和,則該圓錐的體積為________14.已知全集,,則________.15.已知向量,若向量與共線,則________.16.函數在的零點個數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數().(1)討論的單調性;(2)若對,恒成立,求的取值范圍.18.(12分)已知都是大于零的實數.(1)證明;(2)若,證明.19.(12分)已知.(1)若,求函數的單調區間;(2)若不等式恒成立,求實數的取值范圍.20.(12分)已知函數.(1)解不等式;(2)若函數存在零點,求的求值范圍.21.(12分)在直角坐標系中,直線的參數方程是為參數),曲線的參數方程是為參數),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.22.(10分)已知件次品和件正品混放在一起,現需要通過檢測將其區分,每次隨機檢測一件產品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結束.(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;(2)已知每檢測一件產品需要費用元,設表示直到檢測出件次品或者檢測出件正品時所需要的檢測費用(單位:元),求的分布列.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

構造函數,利用導數研究函數的單調性,即可得到結論.【詳解】設,則函數的導數,,,即函數為減函數,,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數研究函數單調性,根據函數的單調性解不等式,考查學生分析問題解決問題的能力,是難題.2.A【解析】

設等差數列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【詳解】設等差數列的公差為.由得,解得.所以.故選:A【點睛】本題主要考查了等差數列的基本量求解,屬于基礎題.3.D【解析】

如圖,設雙曲線的右焦點為,連接并延長交右支于,連接,設,利用雙曲線的幾何性質可以得到,,結合、可求離心率.【詳解】如圖,設雙曲線的右焦點為,連接,連接并延長交右支于.因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設,則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.【點睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構造關于的方程,本題屬于難題.4.A【解析】

根據條件將問題轉化為,對于恒成立,然后構造函數,然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數研究函數的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.5.D【解析】

根據,利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數的圖象與性質,以及對數的比較大小問題,其中解答熟記三角函數與對數函數的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6.B【解析】

由題意可知“屯”卦符號“”表示二進制數字010001,將其轉化為十進制數即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數字010001,轉化為十進制數的計算為1×20+1×24=1.故選:B.【點睛】本題主要考查數制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.7.C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.8.B【解析】

根據圖象求得函數的解析式,結合余弦函數的單調性與對稱性逐項判斷即可.【詳解】由圖象可得,函數的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數在上單調遞減,當時,函數在上單調遞減,故A正確;令,得,故函數在上單調遞增.當時,函數在上單調遞增,故B錯誤;令,得,故函數的對稱中心是,故C正確;令,得,故函數的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數的解析式,同時也考查了余弦型函數的單調性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.9.A【解析】

設,由得:,由復數相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數的求法,考查對復數相等的理解,考查復數在復平面對應的點,考查運算能力,屬于常考題.10.C【解析】

根據基本幾何體的三視圖確定.【詳解】正方體的三個三視圖都是相等的正方形,球的三個三視圖都是相等的圓,圓錐的三個三視圖有一個是圓,另外兩個是全等的等腰三角形,長寬高互不相等的長方體的三視圖是三個兩兩不全等的矩形.故選:C.【點睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關鍵.11.B【解析】

根據拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.12.A【解析】分析:題設中復數滿足的等式可以化為,利用復數的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數的四則運算和復數概念中的共軛復數,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

依據圓錐的底面積和側面積公式,求出底面半徑和母線長,再根據勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積。【詳解】設圓錐的底面半徑為,母線長為,高為,所以有解得,故該圓錐的體積為。【點睛】本題主要考查圓錐的底面積、側面積和體積公式的應用。14.【解析】

利用集合的補集運算即可求解.【詳解】由全集,,所以.故答案為:【點睛】本題考查了集合的補集運算,需理解補集的概念,屬于基礎題.15.【解析】

計算得到,根據向量平行計算得到答案.【詳解】由題意可得,因為與共線,所以有,即,解得.故答案為:.【點睛】本題考查了根據向量平行求參數,意在考查學生的計算能力.16.【解析】

求出的范圍,再由函數值為零,得到的取值可得零點個數.【詳解】詳解:由題可知,或解得,或故有3個零點.【點睛】本題主要考查三角函數的性質和函數的零點,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)①當時,在上單調遞減,在上單調遞增;②當時,在上單調遞增;(2).【解析】

(1)求出函數的定義域和導函數,,對討論,得導函數的正負,得原函數的單調性;(2)法一:由得,分別運用導函數得出函數(),的單調性,和其函數的最值,可得,可得的范圍;法二:由得,化為令(),研究函數的單調性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得,得,在上單調遞減,在上單調遞增;②當時,恒成立,在上單調遞增;(2)法一:由得,令(),則,在上單調遞減,,,即,令,則,在上單調遞增,,在上單調遞減,所以,即,(*)當時,,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調遞減,,,即,當時,由(Ⅰ)知在上單調遞增,恒成立,滿足題意當時,令,則,所以在上單調遞減,又,當時,,,使得,當時,,即,又,,,不滿足題意,綜上所述,的取值范圍是【點睛】本題考查對于含參數的函數的單調性的討論,不等式恒成立時,求解參數的范圍,屬于難度題.18.(1)答案見解析.(2)答案見解析【解析】

(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點睛】本題考查了基本不等式的應用,屬于基礎題.19.(1)答案不唯一,具體見解析(2)【解析】

(1)分類討論,利用導數的正負,可得函數的單調區間.(2)分離出參數后,轉化為函數的最值問題解決,注意函數定義域.【詳解】(1)由得或①當時,由,得.由,得或此時的單調遞減區間為,單調遞增區間為和.②當時,由,得由,得或此時的單調遞減區間為,單調遞增區間為和綜上:當時,單調遞減區間為,單調遞增區間為和當時,的單調遞減區間為,單調遞增區間為和.(2)依題意,不等式恒成立等價于在上恒成立,可得,在上恒成立,設,則令,得,(舍)當時,;當時,當變化時,,變化情況如下表:10單調遞增單調遞減∴當時,取得最大值,,∴.∴的取值范圍是.【點睛】本題主要考查了利用導數證明函數的單調性以及利用導數研究不等式的恒成立問題,屬于中檔題.20.(1)或;(2).【解析】

(1)通過討論的范圍,將絕對值符號去掉,轉化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數零點問題轉化為曲線交點問題解決,數形結合得到結果.【詳解】(1)有題不等式可化為,當時,原不等式可化為,解得;當時,原不等式可化為,解得,不滿足,舍去;當時,原不等式可化為,解得,所以不等式的解集為.(2)因為,所以若函數存在零點則可轉化為函數與的圖像存在交點,函數在上單調增,在上單調遞減,且.數形結合可知.【點睛】該題考查的是有關不等式的問題,涉及到的知識點有分類討論求絕對值不等式的解集,將零點問題轉化為曲線交點的問題來解決,數形結合思想的應用,屬于簡單題目.21.(1),;(2).【解析】

(1)先把直線和曲線的參數方程化成普通方程,再化成極坐標方程;(2)聯立極坐標方程,根據極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數方程是為參數),消去參數得直角坐標方程為:.轉換為極坐標方程為:,即.曲線的參數方程是(為參數),轉換為直角坐標方程為:,化為一般式得化為極坐標方程為:.

(2)由于,得,.所以,所以,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論