




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省蕪湖縣一中2025屆高三下學期期末教學質量檢測試題數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列是公比為的正項等比數列,若、滿足,則的最小值為()A. B. C. D.2.已知復數,滿足,則()A.1 B. C. D.53.已知,則()A. B. C. D.24.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或15.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.6.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環所占面積與單獨五個環面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內隨機取N個點,經統計落入五環內部及其邊界上的點數為n個,已知圓環半徑為1,則比值P的近似值為()A. B. C. D.7.以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費價格指數與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費價格指數超過102C.四個月的數據顯示北京市的居民消費價格指數增長幅度波動較小D.僅有天津市從年初開始居民消費價格指數的增長呈上升趨勢8.如圖所示的“數字塔”有以下規律:每一層最左與最右的數字均為2,除此之外每個數字均為其兩肩的數字之積,則該“數字塔”前10層的所有數字之積最接近()A. B. C. D.9.已知非零向量,滿足,,則與的夾角為()A. B. C. D.10.把函數的圖象向右平移個單位長度,得到函數的圖象,若函數是偶函數,則實數的最小值是()A. B. C. D.11.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數為()A.1 B.2 C.3 D.412.點為不等式組所表示的平面區域上的動點,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.14.已知實數滿足,則的最大值為________.15.如果橢圓的對稱軸為坐標軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且=,那么橢圓的方程是.16.已知函數f(x)=若關于x的方程f(x)=kx有兩個不同的實根,則實數k的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在中,a、b、c分別為角A、B、C的對邊,且.(1)求角A的值;(2)若,設角,周長為y,求的最大值.18.(12分)2019年6月,國內的運營牌照開始發放.從到,我們國家的移動通信業務用了不到20年的時間,完成了技術上的飛躍,躋身世界先進水平.為了解高校學生對的消費意愿,2019年8月,從某地在校大學生中隨機抽取了1000人進行調查,樣本中各類用戶分布情況如下:用戶分類預計升級到的時段人數早期體驗用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學生升級時間的早晚與大學生愿意為套餐支付更多的費用作比較,可得出下圖的關系(例如早期體驗用戶中愿意為套餐多支付5元的人數占所有早期體驗用戶的).(1)從該地高校大學生中隨機抽取1人,估計該學生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數,求的分布列和數學期望;(3)2019年底,從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐,能否認為樣本中早期體驗用戶的人數有變化?說明理由.19.(12分)設函數,(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.20.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.21.(12分)如圖,已知四棱錐,底面為邊長為2的菱形,平面,,是的中點,.(Ⅰ)證明:;(Ⅱ)若為上的動點,求與平面所成最大角的正切值.22.(10分)已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用等比數列的通項公式和指數冪的運算法則、指數函數的單調性求得再根據此范圍求的最小值.【詳解】數列是公比為的正項等比數列,、滿足,由等比數列的通項公式得,即,,可得,且、都是正整數,求的最小值即求在,且、都是正整數范圍下求最小值和的最小值,討論、取值.當且時,的最小值為.故選:B.【點睛】本題考查等比數列的通項公式和指數冪的運算法則、指數函數性質等基礎知識,考查數學運算求解能力和分類討論思想,是中等題.2、A【解析】
首先根據復數代數形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復數求模問題,考查復數的除法運算,屬于基礎題.3、B【解析】
結合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得..故選:B【點睛】本小題主要考查利用同角三角函數的基本關系式化簡求值,考查二倍角公式,屬于中檔題.4、D【解析】
求得直線的斜率,利用曲線的導數,求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據切線方程求參數,屬于基礎題.5、B【解析】
設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.6、B【解析】
根據比例關系求得會旗中五環所占面積,再計算比值.【詳解】設會旗中五環所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎題.7、D【解析】
采用逐一驗證法,根據圖表,可得結果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數的增長呈上升趨勢故選:D【點睛】本題考查圖表的認識,審清題意,細心觀察,屬基礎題.8、A【解析】
結合所給數字特征,我們可將每層數字表示成2的指數的形式,觀察可知,每層指數的和成等比數列分布,結合等比數列前項和公式和對數恒等式即可求解【詳解】如圖,將數字塔中的數寫成指數形式,可發現其指數恰好構成“楊輝三角”,前10層的指數之和為,所以原數字塔中前10層所有數字之積為.故選:A【點睛】本題考查與“楊輝三角”有關的規律求解問題,邏輯推理,等比數列前項和公式應用,屬于中檔題9、B【解析】
由平面向量垂直的數量積關系化簡,即可由平面向量數量積定義求得與的夾角.【詳解】根據平面向量數量積的垂直關系可得,,所以,即,由平面向量數量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數量積的運算,平面向量夾角的求法,屬于基礎題.10、A【解析】
先求出的解析式,再求出的解析式,根據三角函數圖象的對稱性可求實數滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應的函數解析式為,故.令,,解得,.因為為偶函數,故直線為其圖象的對稱軸,令,,故,,因為,故,當時,.故選:A.【點睛】本題考查三角函數的圖象變換以及三角函數的圖象性質,注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應的解析式為,另外,如果為正弦型函數圖象的對稱軸,則有,本題屬于中檔題.11、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關于命題,函數,當時,,當即時,取等號,當時,函數沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應用,以及復合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎題.12、B【解析】
作出不等式對應的平面區域,利用線性規劃的知識,利用的幾何意義即可得到結論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規劃的應用,根據目標函數的幾何意義結合斜率公式是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,將的長度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,如圖所示因為,,所以,,,又二面角的大小為,則,,所以,設外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數形結合,建立關于球的半徑的方程,本題計算量較大,是一道難題.14、【解析】
作出不等式組所表示的平面區域,將目標函數看作點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,代入點A的坐標可得答案.【詳解】畫出二元一次不等式組所表示的平面區域,如下圖所示,由得點,目標函數表示點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:.【點睛】本題考查求目標函數的最值,關鍵在于明確目標函數的幾何意義,屬于中檔題.15、【解析】
由題意可設橢圓方程為:∵短軸的一個端點與兩焦點組成一正三角形,焦點在軸上∴又,∴,∴橢圓的方程為,故答案為.考點:橢圓的標準方程,解三角形以及解方程組的相關知識.16、【解析】由圖可知,當直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點,即方程有兩個不相同的實根.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用正弦定理,結合題中條件,可以得到,之后應用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周長,利用三角函數的最值求解即可.【詳解】(1)由已知可得,結合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴當,即時,.【點睛】該題主要考查的是有關解三角形的問題,解題的關鍵是掌握正余弦定理,屬于簡單題目.18、(1)(2)詳見解析(3)事件雖然發生概率小,但是發生可能性為0.02,所以認為早期體驗用戶沒有發生變化,詳見解析【解析】
(1)由從高校大學生中隨機抽取1人,該學生在2021年或2021年之前升級到,結合古典摡型的概率計算公式,即可求解;(2)由題意的所有可能值為,利用相互獨立事件的概率計算公式,分別求得相應的概率,得到隨機變量的分布列,利用期望的公式,即可求解.(3)設事件為“從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐”,得到七概率為,即可得到結論.【詳解】(1)由題意可知,從高校大學生中隨機抽取1人,該學生在2021年或2021年之前升級到的概率估計為樣本中早期體驗用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗用戶中隨機抽取1人,該學生愿意為升級多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機抽取1人,該學生愿意為升級多支付10元或10元以上”,由題意可知,事件,相互獨立,且,,所以,,,所以的分布列為0120.180.490.33故的數學期望.(3)設事件為“從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐”,那么.回答一:事件雖然發生概率小,但是發生可能性為0.02,所以認為早期體驗用戶沒有發生變化.回答二:事件發生概率小,所以可以認為早期體驗用戶人數增加.【點睛】本題主要考查了離散型隨機變量的分布列,數學期望的求解及應用,對于求離散型隨機變量概率分布列問題首先要清楚離散型隨機變量的可能取值,計算得出概率,列出離散型隨機變量概率分布列,最后按照數學期望公式計算出數學期望,其中列出離散型隨機變量概率分布列及計算數學期望是理科高考數學必考問題.19、(1)或;(2)證明見解析【解析】
(1)將化簡,分類討論即可;(2)由(1)得,,展開后再利用基本不等式即可.【詳解】(1)當時,,所以或或解得或,因此不等式的解集的或(2)根據,當且僅當時,等式成立.【點睛】本題考查絕對值不等式的解法、利用基本不等式證明不等式問題,考查學生基本的計算能力,是一道基礎題.20、(1);(2).【解析】
(1)由正弦定理化簡已知等式可得sinBcosA﹣sinAsinB=1,結合sinB>1,可求tanA=,結合范圍A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根據三角形的面積公式即可計算得解.【詳解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根據正弦定理得到∴b=6,∴S△ABC=ab==6.【點睛】本題主要考查了正弦定理,三角形的面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.21、(Ⅰ)見解析;(Ⅱ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- ppp供暖項目合同樣本
- 出納擔保合同標準文本
- 非遺題材紀錄片創作中的文化記憶研究-兼論個人作品《“聲聲”不息》
- 2010施工合同樣本
- 光伏指標居間合同標準文本
- 入股購買設備合同標準文本
- 內部購車名額合同樣本
- 共享美甲店合同樣本
- 公對私購銷合同合同范例
- 養殖土地合作合同樣本
- 糖尿病科普教育的社交媒體推廣-洞察分析
- 自動噴水滅火系統的工作原理和應用
- 數學與科技的融合跨學科教學在小學數學中的實踐
- 產品包裝流程與規范
- 小學道德與法治實踐性作業的設計與評價
- 氣候風險與企業綠色創新
- 基礎醫學題庫(含參考答案)
- 2024年中考語文試題分類匯編:非連續性文本閱讀(教師版)
- 中職語文高二上學期拓展模塊上冊期末模擬卷2打印版
- 中建質量樣板實施方案
- 20以內進位退位加減法計算題-
評論
0/150
提交評論