四川省眉山市仁壽第一中學(xué)2025年校高三下學(xué)期第一次在線月考數(shù)學(xué)試題_第1頁
四川省眉山市仁壽第一中學(xué)2025年校高三下學(xué)期第一次在線月考數(shù)學(xué)試題_第2頁
四川省眉山市仁壽第一中學(xué)2025年校高三下學(xué)期第一次在線月考數(shù)學(xué)試題_第3頁
四川省眉山市仁壽第一中學(xué)2025年校高三下學(xué)期第一次在線月考數(shù)學(xué)試題_第4頁
四川省眉山市仁壽第一中學(xué)2025年校高三下學(xué)期第一次在線月考數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川省眉山市仁壽第一中學(xué)2025年校高三下學(xué)期第一次在線月考數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.馬林●梅森是17世紀(jì)法國著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p﹣1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素?cái)?shù))的素?cái)?shù),稱為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是()A.3 B.4 C.5 D.62.設(shè),則復(fù)數(shù)的模等于()A. B. C. D.3.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.4.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.5.在菱形中,,,,分別為,的中點(diǎn),則()A. B. C.5 D.6.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.7.已知為圓的一條直徑,點(diǎn)的坐標(biāo)滿足不等式組則的取值范圍為()A. B.C. D.8.根據(jù)散點(diǎn)圖,對(duì)兩個(gè)具有非線性關(guān)系的相關(guān)變量x,y進(jìn)行回歸分析,設(shè)u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計(jì)值是()A.e B.e2 C.ln2 D.2ln29.已知集合,則()A. B.C. D.10.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.11.已知等差數(shù)列的前項(xiàng)和為,且,則()A.45 B.42 C.25 D.3612.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點(diǎn)為點(diǎn)在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點(diǎn)是線段上一動(dòng)點(diǎn),.給出下列四個(gè)結(jié)論:①為的重心;②;③當(dāng)時(shí),平面;④當(dāng)三棱錐的體積最大時(shí),三棱錐外接球的表面積為.其中,所有正確結(jié)論的序號(hào)是________________.14.在中,點(diǎn)在邊上,且,設(shè),,則________(用,表示)15.若,則=____,=___.16.已知函數(shù)則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設(shè)拋擲4次的得分為,求變量的分布列和數(shù)學(xué)期望.(2)當(dāng)游戲得分為時(shí),游戲停止,記得分的概率和為.①求;②當(dāng)時(shí),記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.18.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對(duì)數(shù)的底,k為常數(shù))有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).(1)求實(shí)數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.19.(12分)已知函數(shù)(1)解不等式;(2)若均為正實(shí)數(shù),且滿足,為的最小值,求證:.20.(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.21.(12分)2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎(jiǎng)促銷活動(dòng),若顧客一次消費(fèi)達(dá)到400元?jiǎng)t可參加一次抽獎(jiǎng)活動(dòng),超市設(shè)計(jì)了兩種抽獎(jiǎng)方案.方案一:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎(jiǎng),且顧客有放回地抽取3次.(1)現(xiàn)有兩位顧客均獲得抽獎(jiǎng)機(jī)會(huì),且都按方案一抽獎(jiǎng),試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎(jiǎng)機(jī)會(huì).①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得返金券的數(shù)學(xué)期望;②為了吸引顧客消費(fèi),讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎(jiǎng)方案進(jìn)行促銷活動(dòng)?22.(10分)古人云:“腹有詩書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國,校園讀書活動(dòng)的熱潮正在興起.某校為統(tǒng)計(jì)學(xué)生一周課外讀書的時(shí)間,從全校學(xué)生中隨機(jī)抽取名學(xué)生進(jìn)行問卷調(diào)査,統(tǒng)計(jì)了他們一周課外讀書時(shí)間(單位:)的數(shù)據(jù)如下:一周課外讀書時(shí)間/合計(jì)頻數(shù)46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時(shí)間的中位數(shù).(2)如果讀書時(shí)間按,,分組,用分層抽樣的方法從名學(xué)生中抽取20人.①求每層應(yīng)抽取的人數(shù);②若從,中抽出的學(xué)生中再隨機(jī)選取2人,求這2人不在同一層的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

模擬程序的運(yùn)行即可求出答案.【詳解】解:模擬程序的運(yùn)行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時(shí),不滿足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是5,故選:C.【點(diǎn)睛】本題主要考查程序框圖,屬于基礎(chǔ)題.2.C【解析】

利用復(fù)數(shù)的除法運(yùn)算法則進(jìn)行化簡,再由復(fù)數(shù)模的定義求解即可.【詳解】因?yàn)?所以,由復(fù)數(shù)模的定義知,.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算法則和復(fù)數(shù)的模;考查運(yùn)算求解能力;屬于基礎(chǔ)題.3.A【解析】

求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計(jì)算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點(diǎn)睛】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.4.A【解析】

根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問題,是基礎(chǔ)題.5.B【解析】

據(jù)題意以菱形對(duì)角線交點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運(yùn)算計(jì)算出結(jié)果.【詳解】設(shè)與交于點(diǎn),以為原點(diǎn),的方向?yàn)檩S,的方向?yàn)檩S,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點(diǎn)睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計(jì)算較麻煩可考慮用建系的方法求解.6.B【解析】

先分別判斷命題真假,再由復(fù)合命題的真假性,即可得出結(jié)論.【詳解】為真命題;命題是假命題,比如當(dāng),或時(shí),則不成立.則,,均為假.故選:B【點(diǎn)睛】本題考查復(fù)合命題的真假性,判斷簡單命題的真假是解題的關(guān)鍵,屬于基礎(chǔ)題.7.D【解析】

首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點(diǎn)與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點(diǎn)睛】本題考查與線性規(guī)劃相關(guān)的取值范圍問題,涉及到向量的線性運(yùn)算、數(shù)量積、點(diǎn)到直線的距離等知識(shí),考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.8.B【解析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質(zhì)可得最大估計(jì)值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當(dāng)時(shí),取到最大值2,因?yàn)樵谏蠁握{(diào)遞增,則取到最大值.故選:B.【點(diǎn)睛】本題考查了非線性相關(guān)的二次擬合問題,考查復(fù)合型指數(shù)函數(shù)的最值,是基礎(chǔ)題,.9.B【解析】

先由得或,再計(jì)算即可.【詳解】由得或,,,又,.故選:B【點(diǎn)睛】本題主要考查了集合的交集,補(bǔ)集的運(yùn)算,考查學(xué)生的運(yùn)算求解能力.10.D【解析】,則故選D.11.D【解析】

由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項(xiàng)和的公式即可.【詳解】由題,.故選:D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項(xiàng)和.12.C【解析】

由題意可得面,可知,因?yàn)椋瑒t面,于是.由此推出三棱錐外接球球心是的中點(diǎn),進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因?yàn)椋瑒t面,于是,因此三棱錐外接球球心是的中點(diǎn).計(jì)算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點(diǎn)睛】本題主要考查簡單的幾何體、球的表面積等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力、運(yùn)算求解能力及創(chuàng)新意識(shí),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】

①點(diǎn)在平面內(nèi)的正投影為點(diǎn),而正方體的體對(duì)角線與和它不相交的的面對(duì)角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點(diǎn),連接,則點(diǎn)在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設(shè),則由可得,然后對(duì)應(yīng)邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當(dāng)點(diǎn)到平面的距離最大時(shí),三棱錐的體積最大,而當(dāng)點(diǎn)與點(diǎn)重合時(shí),點(diǎn)到平面的距離最大,此時(shí)為棱長為的正四面體,其外接球半徑,則球,所以④錯(cuò)誤.【詳解】因?yàn)椋B接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設(shè)由得,易得,由,則,由得,,解得,所以③正確;當(dāng)與重合時(shí),最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯(cuò)誤.故答案為:①②③【點(diǎn)睛】此題考查立體幾何中的垂直、平行關(guān)系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.14.【解析】

結(jié)合圖形及向量的線性運(yùn)算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果.【詳解】在中,因?yàn)椋裕忠驗(yàn)椋裕蚀鸢笧椋骸军c(diǎn)睛】本題主要考查三角形中向量的線性運(yùn)算,關(guān)鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉(zhuǎn)化.15.12821【解析】

令,求得的值.利用展開式的通項(xiàng)公式,求得的值.【詳解】令,得.展開式的通項(xiàng)公式為,當(dāng)時(shí),為,即.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式的通項(xiàng)公式,考查賦值法求解二項(xiàng)式系數(shù)有關(guān)問題,屬于基礎(chǔ)題.16.【解析】

先由解析式求得(2),再求(2).【詳解】(2),,所以(2),故答案為:【點(diǎn)睛】本題考查對(duì)數(shù)、指數(shù)的運(yùn)算性質(zhì),分段函數(shù)求值關(guān)鍵是“對(duì)號(hào)入座”,屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)分布列見解析,數(shù)學(xué)期望為6;(2)①;②證明見解析【解析】

(1)變量的所有可能取值為4,5,6,7,8,分別求出對(duì)應(yīng)的概率,進(jìn)而可求出變量的分布列和數(shù)學(xué)期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進(jìn)而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當(dāng)且時(shí),,結(jié)合,可推出,從而可證明數(shù)列為常數(shù)列;結(jié)合,可推出,進(jìn)而可證明數(shù)列為等比數(shù)列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數(shù)學(xué)期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時(shí),有,則時(shí),,所以,故數(shù)列為常數(shù)列;又,,所以數(shù)列為等比數(shù)列.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查常數(shù)列及等比數(shù)列的證明,考查學(xué)生的計(jì)算求解能力與推理論證能力,屬于中檔題.18.(1);(2)見解析【解析】

(1)求出,記,問題轉(zhuǎn)化為方程有兩個(gè)不同解,求導(dǎo),研究極值即可得結(jié)果;(2)由(1)知,在區(qū)間上存在極大值點(diǎn),且,則可求出極大值,記,求導(dǎo),求單調(diào)性,求出極值即可.【詳解】(1),由,記,,由,且時(shí),,單調(diào)遞減,,時(shí),,單調(diào)遞增,,由題意,方程有兩個(gè)不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,記,則,因?yàn)椋裕詴r(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增,所以,即函數(shù)的極大值不小于1.解法二:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,因?yàn)椋?即函數(shù)的極大值不小于1.【點(diǎn)睛】本題考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,考查學(xué)生綜合分析能力與轉(zhuǎn)化能力,是一道中檔題.19.(1)或(2)證明見解析【解析】

(1)將寫成分段函數(shù)的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,證得不等式成立.【詳解】(1)當(dāng)時(shí),恒成立,解得;當(dāng)時(shí),由,解得;當(dāng)時(shí),由解得所以的解集為或(2)由(1)可求得最小值為,即因?yàn)榫鶠檎龑?shí)數(shù),且(當(dāng)且僅當(dāng)時(shí),取“”)所以,即.【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的求法,考查利用基本不等式證明不等式,屬于中檔題.20.(1)(2)【解析】

(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當(dāng)且僅當(dāng)時(shí)取等,.所以的面積的最大值為.【點(diǎn)睛】本題考查了正余弦定理在解三角形中的應(yīng)用,考查了三角形面積的最值問題,難度較易.21.(1)(2)①②第一種抽獎(jiǎng)方案.【解析】

(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據(jù)相互獨(dú)立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計(jì)算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計(jì)算即可,方案二根據(jù)二項(xiàng)分布計(jì)算期望即可②根據(jù)①得出結(jié)論.【詳解】(1)選擇方案一,則每一次摸到紅球的概率為設(shè)“每位顧客獲得180元返金劵”為事件A,則所以兩位顧客均獲得180元返金劵的概率(2)①若選擇抽獎(jiǎng)方案一,則每一次摸到紅球的概率為,每一次摸到白球的概率為.設(shè)獲得返金劵金額為元,則可能的取值為60,100,140,180.則;;;.所以選擇抽獎(jiǎng)方案一,該顧客獲得返金劵金額的數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論