2025屆交通大學附屬中學五校聯考高考數學試題模擬試卷_第1頁
2025屆交通大學附屬中學五校聯考高考數學試題模擬試卷_第2頁
2025屆交通大學附屬中學五校聯考高考數學試題模擬試卷_第3頁
2025屆交通大學附屬中學五校聯考高考數學試題模擬試卷_第4頁
2025屆交通大學附屬中學五校聯考高考數學試題模擬試卷_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆交通大學附屬中學五校聯考高考數學試題模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,是平面內三個單位向量,若,則的最小值()A. B. C. D.52.已知數列為等差數列,為其前項和,,則()A.7 B.14 C.28 D.843.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加4.已知函數,,若對任意的,存在實數滿足,使得,則的最大值是()A.3 B.2 C.4 D.55.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.6.已知定義在上的函數,若函數為偶函數,且對任意,,都有,若,則實數的取值范圍是()A. B. C. D.7.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.設平面與平面相交于直線,直線在平面內,直線在平面內,且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件9.已知復數z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知函數,要得到函數的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度11.已知變量x,y間存在線性相關關系,其數據如下表,回歸直線方程為,則表中數據m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.512.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知變量(m>0),且,若恒成立,則m的最大值________.14.設變量,,滿足約束條件,則目標函數的最小值是______.15.正方形的邊長為2,圓內切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.16.記為數列的前項和.若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)若,不等式的解集;(2)若,求實數的取值范圍.18.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優弧(圓上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.19.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮位于岸線上,且滿足岸線,.現計劃建造一條自小鎮經小島至對岸的水上通道(圖中粗線部分折線段,在右側),為保護小島,段設計成與圓相切.設.(1)試將通道的長表示成的函數,并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?20.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,.(1)證明:平面平面ABCD;(2)設H在AC上,,若,求PH與平面PBC所成角的正弦值.21.(12分)設函數,其中.(Ⅰ)當為偶函數時,求函數的極值;(Ⅱ)若函數在區間上有兩個零點,求的取值范圍.22.(10分)已知是等腰直角三角形,.分別為的中點,沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當三棱錐的體積取最大值時,求平面與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

由于,且為單位向量,所以可令,,再設出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結果.【詳解】解:設,,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結合距離公式求解,屬于難題.2.D【解析】

利用等差數列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.3.C【解析】

根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.4.A【解析】

根據條件將問題轉化為,對于恒成立,然后構造函數,然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數研究函數的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.5.A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.6.A【解析】

根據題意,分析可得函數的圖象關于對稱且在上為減函數,則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數為偶函數,所以函數的圖象關于對稱,因為對任意,,都有,所以函數在上為減函數,則,解得:.即實數的取值范圍是.故選:A.【點睛】本題考查函數的對稱性與單調性的綜合應用,涉及不等式的解法,屬于綜合題.7.C【解析】

由余弦函數的單調性找出的等價條件為,再利用大角對大邊,結合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數在區間上單調遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點睛】本題考查充分必要條件的判定,同時也考查了余弦函數的單調性、大角對大邊以及正弦定理的應用,考查推理能力,屬于中等題.8.A【解析】

試題分析:α⊥β,b⊥m又直線a在平面α內,所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.9.A【解析】

設,由得:,由復數相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數的求法,考查對復數相等的理解,考查復數在復平面對應的點,考查運算能力,屬于常考題.10.A【解析】

根據函數圖像平移原則,即可容易求得結果.【詳解】因為,故要得到,只需將向左平移個單位長度.故選:A.【點睛】本題考查函數圖像平移前后解析式的變化,屬基礎題.11.A【解析】

計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點睛】本題考查線性回歸直線方程,解題關鍵是掌握性質:線性回歸直線一定過中心點.12.C【解析】

利用線線、線面、面面相應的判定與性質來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質定理,是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

在不等式兩邊同時取對數,然后構造函數f(x)=,求函數的導數,研究函數的單調性即可得到結論.【詳解】不等式兩邊同時取對數得,即x2lnx1<x1lnx2,又即成立,設f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數f(x)在(0,m)上為增函數,函數的導數,由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數f(x)的最大增區間為(0,e),則m的最大值為e故答案為:e【點睛】本題考查函數單調性與導數之間的應用,根據條件利用取對數得到不等式,從而可構造新函數,是解決本題的關鍵14.7【解析】作出不等式組表示的平面區域,得到如圖的△ABC及其內部,其中A(2,1),B(1,2),C(4,5)設z=F(x,y)=2x+3y,將直線l:z=2x+3y進行平移,當l經過點A時,目標函數z達到最小值∴z最小值=F(2,1)=715.【解析】

根據向量關系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數量積的取值范圍,涉及基本運算,關鍵在于恰當地對向量進行轉換,便于計算解題.16.1【解析】

由已知數列遞推式可得數列是以16為首項,以為公比的等比數列,再由等比數列的前項和公式求解.【詳解】由,得,.且,則,即.數列是以16為首項,以為公比的等比數列,則.故答案為:1.【點睛】本題主要考查數列遞推式,考查等比數列的前項和,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)依題意可得,再用零點分段法分類討論可得;(2)依題意可得對恒成立,根據絕對值的幾何意義將絕對值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當時,原不等式等價于,解得當時,原不等式等價于,解得,所以;當時,原不等式等價于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點睛】本題考查絕對值不等式的解法,著重考查等價轉化思想與分類討論思想的綜合應用,屬于中檔題.18.,;當時,棧道總長度最短.【解析】

連,,由切線長定理知:,,,,即,,則,,進而確定的取值范圍;根據求導得,利用增減性算出,進而求得取值.【詳解】解:連,,由切線長定理知:,,,又,,故,則劣弧的長為,因此,優弧的長為,又,故,,即,,所以,,,則;,,其中,,-0+單調遞減極小值單調遞增故時,所以當時,棧道總長度最短.【點睛】本題主要考查導數在函數當中的應用,屬于中檔題.19.(1),定義域是.(2)百萬【解析】

(1)以為原點,直線為軸建立如圖所示的直角坐標系,設,利用直線與圓相切得到,再代入這一關系中,即可得答案;(2)利用導數求函數的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標系.設,則,,.因為,所以直線的方程為,即,因為圓與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當時,,設銳角滿足,則,所以關于的函數是,定義域是.(2)要使建造此通道費用最少,只要通道的長度即最小.令,得,設銳角,滿足,得.列表:0減極小值增所以時,,所以建造此通道的最少費用至少為百萬元.【點睛】本題考查三角函數模型的實際應用、利用導數求函數的最小值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.20.(1)見解析;(2)【解析】

(1)記,連結,推導出,平面,由此能證明平面平面;(2)推導出,平面,連結,由題意得為的重心,,從而平面平面,進而是與平面所成角,由此能求出與平面所成角的正弦值.【詳解】(1)證明:記,連結,中,,,,,,平面,平面,平面平面.(2)中,,,,,,,,,,平面,∴,連結,由題意得為的重心,,,,平面平面平面,∴在平面的射影落在上,是與平面所成角,中,,,,.與平面所成角的正弦值為.【點睛】本題考查面面垂直的證明,考查線面角的正弦值的求法,考查線線、線面、面面的位置關系等基礎知識,考查運算求解能力,是中檔題.21.(Ⅰ)極小值,極大值;(Ⅱ)或【解析】

(Ⅰ)根據偶函數定義列方程,解得.再求導數,根據導函數零點列表分析導函數符號變化規律,即得極值,(Ⅱ)先分離變量,轉化研究函數,,利用導數研究單調性與圖象,最后根據圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數是偶函數,得,即對于任意實數都成立,所以.此時,則.由,解得.當x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調遞減,在上單調遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論