




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
HowEdgeComputing,ArtificialIntelligence,andGenerativeAIarechangingthefutureofrestauranttechnology
?2024Cognizant
Abstract
Frequentchallengesfacedbytherestaurantindustrycanbecategorizedunderthreebroadlevelsegments,includinglowcustomerretention,
inefficientoperationsandinventorymanagementandhighlaborcost.
Lowcustomerretention:Therestaurantindustryishighlycompetitiveandfragmented,with
customershavingawiderangeofchoicesand
preferences.Thepercentageofcustomers
whoareloyaltoaspecificrestaurantbrandis
declining,whereasthosewhoswitchbrands
morethanonceamonthisontherise.Toretain
andattractcustomers,restaurantsneedtoofferpersonalizedandengagingexperiences,suchascustomizedmenus,recommendations,rewards,andfeedback.
Inefficientoperationsandinventorymanagement:
Therestaurantindustryfacesvariousoperationalchallenges,suchasoptimizingfoodquality
andsafety,reducingfoodwasteandspoilage,
managingsupplychainandinventory,and
complyingwithhealthandsafetyregulations.
Accordingtoareport,theaveragefoodwastageinrestaurantsis11%offoodpurchases,which
amountstosignificantlossesannually.To
improveoperationalefficiencyandprofitability,restaurantsneedtoleveragereal-timedataandanalytics,automateprocesses,andoptimize
resources.
2|?2024Cognizant
Highlaborcostandturnoverrates:Therestaurantindustryisoneofthemostlabor-intensivesectors.Accordingtoasurvey,98%ofoperatorssayhigherlaborcostsareanissuefortheirrestaurant.
ThispaperdiscusseshowEdgeComputing,
AI,andGenerativeAIcanhelpaddressthese
challengesbybringingcomputingpowerclosertowherethedataisgenerated,reducinglatency,andenablingfasterdecision-making.ItexplorestheadvantagesofEdgeComputing,theuseof
in-restaurantcloudtechnology,andthebenefitsofusingLargeLanguageModels(LLMs)onEdgedevices.Thepaperalsodiscussesthetechnicalchallengesthatareneededtoberesolved,
leveragingthemethodsformodelquantization.
Moreover,theindustrysuffersfromahighturnoverratewhichimpactsthequalityandconsistencyofserviceandincreasestrainingandhiringcosts.
3|?2024Cognizant
Introduction
Therestaurantindustryisundergoingadigital
transformation,drivenbytheneedtoenhance
customerexperiences,optimizeoperations,
andincreaserevenue.EdgeComputing,AI,and
GenerativeAIaresomeofthekeytechnologies
thatareenablingthistransformation.AccordingtoareportbyGrandViewResearch,theglobal
EdgeComputingmarketsizeisexpectedtoreach$155.90billionby3030,growingatacompound
annualgrowthrate(CAGR)of36.9%.
Thereportalsostatesthat,“ArtificialIntelligence(AI)integrationintotheEdgeenvironmentisprojected
todrivemarketgrowth.AnEdgeAIsystemis
estimatedtohelpbusinessesmakedecisionsinrealtimeinmilliseconds.Theneedtominimizeprivacy
concernsassociatedwhiletransmittinglarge
amountsofdata,aswellaslatencyandbandwidthissuesthatlimitanorganization’sdatatransmissioncapabilities,arefactorsprojectedtofuelmarket
growthinthecomingyears.”
GenerativeAI:GenerativeAIisabranchofAIthat
cangeneratenovelandrealisticcontent,suchas
images,text,music,orvideo,basedonexistingdata.
EdgeComputing:EdgeComputingistheideaof
doingcomputingactivitiesnearwherethedata
comesfrom,toreducethedelaybetweenthedataandthedecisions.Oneofthemaindifferences
betweenEdgeandCloudComputingisthelocationofdataprocessing.WhileCloudComputingrelies
oncentralizedserverstostoreandprocessdata,
EdgeComputingdistributesthedataprocessing
acrosslocaldevicesorserversthatareclosertothe
datasource.Thisreducesthelatency,bandwidth,
andprivacyissuesthatareassociatedwithCloud
Computing.EdgeComputingcanalsoenablemoreefficientandreliableAIapplicationsthatallowreal-timeornearreal-timedecisionmaking.
Restaurantsusein-restaurantCloudtechnologywithEdgeComputingtospeedupandensure
dataprocessingandsystemuptimeforin-storeapplications.
ThecomparisonbetweenEdgeandClouddeploymentsisshowninthepicturebelow.
EdgeQoSCloud
?LowLeveltask
?Memory?HighLeveltask
?LowLatencyGenAI/
?Applications
?LightweightModels
LLM?DataStorage?Asynchronous
?Latencyofflinetasks
?Power?LargeModels
Requirement?MoreComputing
?rputing?ConcurrencyResources
Diagram1:EdgevsCloud
In-restaurantcloudtechnologydrivenbyEdge
Computingcanhelprestaurantsprocessdata
fasterandmorereliablyandenhancesystem
uptime.Dataissynchronizedwiththecentralclouddatastoreandthein-storeapplicationscanswitchbetweenthein-storecloudandthepubliccloudasneeded.ThehybridEdgeinfrastructureblendsthepubliccloudandthein-storecloudandformsthebasisofthenewCloudComputingforrestaurantstoensurebusinesscontinuity.ByanalyzingdataattheEdgeinreal-timeornearreal-time,businessescantrainAImodelsandimprovetheperformanceofAIdrivenapplications.Someofthedecisions
thatcanhappenatthestorelevelare:
?Computervisiontechnology,GenerativeAI,
machinelearninganddeeplearningframeworksforAI-drivenpersonalization,in-restaurant
housekeeping,dynamicpricing,promotion,
inventory,andproductionoptimizationand
variousotherIoTdrivenoperationsthatusehugeamountofdataforpredictiveanalysis.
?Asmallandpowerfulin-storedevice,anexampleofEdgeComputing,bringscomputingpower
tothedatarequiredtoruntherestaurant
operations.Also,theAPIsinthepubliccloudthatareneededforrestaurantoperationsarecopiedatthein-storecloudtoenablefasterorder
managementandpaymentprocessing.TheseAPIswillkeeptherestaurantrunningevenwhenthereisnoconnectivity.
Thiskindofresilientandredundantarchitecturehelpsrestaurantsmaintainbusinesscontinuity,reliabilityinpaymentprocessing,whichreducesfinanciallossesandincreasescustomer
satisfactionduetofasterspeedanduptime.
EdgeComputingisessentialfortherapid
developmentofGenerativeAIasitsolves
theproblemsofreal-timeprocessing,lower
latency,andeffectivedatamanagement.Asthe
companiesdeployGenerativeAIsolutions,theywillhavetodealwiththeissuesoflong-termcost,dataprivacyandsecurity.EdgeComputinghelpsto
overcomethesechallengesandcleanuptheraw
databeforemovingthedatatothepubliccloudformorecostlyAItrainingoperations.
Pre-trainedmodel
Powerful
computation
Cloud
Largescaledataset
Lightweightmodel
Edgeserver
Finetuning
Generatedcontent
Enduserdevices
Userdata
Userdevice
Webbasedapps
Prompt
Diagram2:LogicalrepresentationofLLMModeldeploymentonEdgeandCloud
5|?2024Cognizant
HowEdgeComputingandGenAIcanimproverestaurantoperations
Basedonthisresearch,thefollowingbusinessmapdepictsthemodules(bluehighlighted),inwhichthecombinationofEdge,GenAIandTraditionalAIcanhaveconsiderableimpactonrestaurantoperations.
In-restaurant
FrontofhouseoperationsBackofhouseoperations
Order
management
Payment
Upsell/Crosssell
offer&couponmanagement
Loyalty
KitchenDisplaySystems
Delivery
ManagementSystem
Receipt
Management
Pricing/tax
POSReporting
Drive-Thru
Order
Queueing&Confirmation
Kiosk
Customer
RelationshipManagement
EmployeeClockIn/Out
Channel/ThirdParty
ServiceProviderIntegration
SocialProfileManagement
MultiChannelOrdering&
Mobility
EndofDayProcess
Inventory
Management
TimeKeeping&Payroll
CashandSalesReconciliation
PurchaseOrder
DigitalSignage
LaborScheduling
BOHReporting
StoreAsset
ManagementReconciliation
POS
ConfigurationManagement
EndofDayProcess
FoodSafety
&Waste
Management
Demand&Forecasting
Employee
management
Aboverestaurant
DataPolling&Delivery
DataAggregation&Reporting
ITServiceManagement
IdentityManagement&UserProvisioning
Corporate
MenuandRestaurantDataManagement
Menuengineering
CouponandOfferManagement
RestaurantDesign&Development/VisualMerchandising
LearningManagement
SupplyChainManagement
FranchiseeManagement
VendorManagement/SupplierSpecificationManagementSystem
CustomerRelationshipManagement
CustomercompliantManagement
InsightandAnalytics
Customer360
BrandingandMarketingStrategy
InfoSecurityManagement
BusinessProcessManagement
Finance
HumanResource
PublicRelations
Legal
CorporateProcurement
StoreAssetManagement
FacilitiesManagement
EmployeeServices
Diagram3:RestaurantBusinessMapwithGenAIopportunitieshighlighted.
6|?2024Cognizant
ReferenceArchitecture
Thefollowingarethekeycomponentsofthereferencearchitecture:
AGenAIcloudserverthatrunsthemodelsandapplicationsfortaskslikemenugeneration,
orderprediction,customersegmentation,etc.ThecloudserveralsokeepsandprocessesthedatafromtheEdgedevicesandsendsthemfeedbackandupdates.
AlocalnetworkofEdgedevicesthatoperatetheGenAImodelsandapplicationsatthe
restaurantlevel,suchaskiosks,tablets,cameras,speakers,etc.TheEdgedevicesusecompactAImodelstodotaskslikefacerecognition,voicerecognition,sentimentanalysis,etc.TheEdgedevicesalsotalktoeachotherandtothecloudserverviaWi-Fiorcellularconnection.
Asetofsensorsandactuatorsthatgatherdatafromthephysicalenvironment,suchas
temperature,humidity,noise,motion,etc.Thesensorsandactuatorsalsoregulatethephysicalaspectsoftherestaurant,suchaslighting,heating,ventilation,etc.
Thereferencearchitecturecanenablethefollowingexampleusecases:
?Acustomerwalksuptoakioskandisidentifiedbythefacerecognitionmodel.ThekioskshowsacustomizedmenucreatedbytheGenerativeAImodelbasedonthecustomer’spreferences,history,andcontext.Thecustomerordersusingvoicerecognitionandpaysusingbiometric
authentication.
?Atabletonatablesensesacustomerandturns
onthespeaker.Thespeakerwelcomesthe
customerandoffersasuggestioncreatedbytheGenerativeAImodelbasedonthecustomer’s
profile,mood,andtimeofday.Thecustomercantalkwiththespeakerusingnaturallanguage
andorder.
?Acameratracksthecrowdsizeandbehavior
intherestaurantandsendsthedatatothe
GenerativeAImodel.TheGenerativeAImodel
estimatesthedemandandsupplyoffooditemsandchangestheinventoryandproduction
accordingly.TheGenerativeAImodelalsoimprovesthestaffingandschedulingoftherestaurantbasedonthedata.
?Asensorrecordsthetemperatureandhumidityinthekitchenandsendsthedatatothe
GenerativeAImodel.TheGenerativeAImodel
managestheheatingandventilationsystemtokeeptheoptimalconditionsforfoodpreparationandsafety.TheGenerativeAImodelalsowarnsthestaffifanyabnormalityorhazard
isdetected.
7|?2024Cognizant
TechnicalArchitecture
LargeLanguageModels(LLMs)onEdgeDevices:
LLMsonEdgeDevicescanprovidemorespeed,
betterprivacyandsecurity,andonlineandofflinefunctionalityHowever,therearesomechallengesthatneedtoberesolved,includinghardwarelimits,energyuse,maintenance,andethicsissues
Quantization:QuantizationisamethodtoshrinkthemodelsizeandmakeitmoreefficientforuseonEdgedevicesItusesatechniquethatlowerstheprecisionofnumericalvaluestolowerthecomputationaland
memoryrequirementsofAImodelsQuantization
canbeappliedatdifferentlevels,suchasweights,activations,oroutputsQuantizationcanalso
beperformedatdifferentstages,suchasduring
training,aftertraining,orduringinference
Quantizationcanimpacttheaccuracy,speed,andsizeofAImodels
BusinessDrivers
Providesrealtime
insightsfromedgetocentralizedsites
SecureDevOps
managementacrossrestaurantsites
Reducing
maintenancecost
Restaurant
Local
Dashboard
EdgeAl
Application
SensorData
Edge
Management
Abovestore
感
SensorDataStream
Edge
Management
ContainerImages
Q
Secrets
DevOps
Management
AlOps
Management
DataLake
MLModelTraining
Hybirdcloudmanagement
Diagram4:TechnicalReferenceView
8|?2024Cognizant
TheGenerativeAIcloudserveristhecentralcomponentofthearchitecture,asithoststhemainmodelsandapplicationsforrestaurantmanagementandoptimization.ThecloudserverusesavarietyofAItechniques,suchasnaturallanguageprocessing,computervision,machinelearning,andGenerativeAI,tocreateandimprovethesolutionsfortherestaurant.ThecloudserveralsocommunicateswiththeEdgedevicesviaAPIsorMQTTmessages,sendingthemfeedback,updates,andcommands.
TheEdgedevicesaretheperipheralcomponentsofthearchitecture,astheyruntheGenerativeAImodels
andapplicationsattherestaurantlevel.TheEdgedevicesusequantizedAImodelstoperformtasksthat
requirelowlatency,highprivacy,orofflineavailability,suchasfacerecognition,voicerecognition,sentimentanalysis,etc.TheEdgedevicesalsocommunicatewitheachotherandwiththesensorsandactuatorsvia
Bluetooth,Zigbee,orWi-Fi,exchangingdataandinformation.
Thesensorsandactuatorsarethephysicalcomponentsofthearchitecture,astheycollectandcontrol
datafromtheenvironment.Thesensorsandactuatorsusesimpleprotocols,suchasGPIO,I2C,orSPI,to
connectwiththeEdgedevices,sendingthemsignalsandreceivinginstructions.ThesensorsandactuatorsalsoenabletheGenAImodelsandapplicationstointeractwiththephysicalaspectsoftherestaurant,suchaslighting,heating,ventilation,etc.
9|?2024Cognizant
Technologyoptions
GoogleCoral:Thisisaplatformthatoffersarangeofproducts,suchasadevelopmentboard,aUSBaccelerator,andasystem-on-module,whichcan
runTensorFlowLitemodelsattheEdge.Itcan
beusedasanEdgedevicetoenableGenerative
AIcapabilitiessuchasfacedetection,object
recognition,andsentimentanalysisforQSRkiosksandotherrestaurantdevices.SomeadvantagesofGoogleCoralareitseaseofuse,scalability,
andintegrationwithGoogleCloudservices.Somedisadvantagesareitslimitedsupportforother
frameworksandlanguages,itsdependencyonGoogle’secosystem,anditsnewand
evolvingstatus.
NVIDIAJetsonNano:Thisisapotentandenergy-
efficientplatformthatcanrunmultipleneural
networksinparallelandprocesshigh-resolution
datafrommultiplesensors.Itcanbeusedasan
EdgedevicetoboostGenerativeAItaskssuchas
computervision,naturallanguageprocessing,
andspeechrecognitionforQSRkiosksandother
restaurantdevices.SomeadvantagesofNVIDIA
JetsonNanoareitshighperformance,lowpower
consumption,andcompatibilitywithpopular
frameworksandtools.Somedisadvantagesareitshighercost,complexity,andlearningcurve,aswellasitspotentialoverheatingandinstabilityissues.
RaspberryPi:Thisisalow-cost,small,and
adaptablesingle-boardcomputerthatcanrun
Linux-basedoperatingsystemsandsupport
variousprogramminglanguages.ItcanbeusedasanEdgedevicetohostGenAImodelsand
applicationsforQSRkiosksandotherrestaurantdevices.SomeadvantagesofRaspberryPiareitscost-effectiveness,mobility,versatility,andlargecommunitysupport.Somedisadvantagesareitslimitedprocessingpower,memory,andstorage,aswellasitsrelianceonexternalperipheralsandpowersources.
GoogleAnthos:Thisisaplatformthatenablesthedeploymentandmanagementofcloud-native
applicationsacrossdifferentenvironments,suchason-premises,publiccloud,orEdgedevices.It
canbeusedasanEdgedevicetorunGenerativeAImodelsandapplicationsforQSRkiosksand
otherrestaurantdeviceswithconsistentpolicies
andsecurity.SomeadvantagesofGoogleAnthosareitsportability,scalability,andintegrationwithGoogleCloudservices.Somedisadvantages
areitshighcost,complexity,anddependency
onGoogle’secosystem.GoogleAnthossupportsKubernetes,whichisaframeworkthatoffers
variousoptionsforquantization,suchasoperator-levelquantization,model-levelquantization,and
graph-levelquantization.
Thetechnologychoicesdescribedabovehavedifferentimplicationsforquantization:
GoogleCoral:ThisdevicehasadedicatedTPU,
whichmeansthatitcanrunTensorFlowLite
modelsattheEdgewithhighspeedandlow
latency.Therefore,quantizationisrequiredfor
GoogleCoral,asitcanenablethedevicetorun
themodelsontheTPU.However,quantization
canalsolimittheflexibilityandcompatibility
ofGoogleCoral,asitcanrestrictthechoiceof
frameworksandlanguages.GoogleCoralsupportsTensorFlowLite,whichisaframeworkthatoffers
variousoptionsforquantization,suchasfullintegerquantization,floatfallbackquantization,and
hybridquantization.
NVIDIAJetsonNano:ThisdevicehasapowerfulGPU,whichmeansthatitcanrunhigh-resolutionandparallelAImodelseffectively.Therefore,
quantizationmaynotbeneededforNVIDIA
JetsonNano,asitcanhandlethecomputationalandmemorydemandsoflargemodels.
However,quantizationcanstillbebeneficialforNVIDIAJetsonNano,asitcanreducethepowerconsumptionandincreasethebatterylifeofthedevice.NVIDIAJetsonNanosupportsTensorFlow,PyTorch,andONNX,whichareframeworks
thatoffervariousoptionsforquantization,suchasquantization-awaretraining,quantization
emulation,andquantizationexport.
RaspberryPi:ThisdevicehasalimitedCPUand
GPU,whichmeansthatitcannotruncomplicatedorlargeAImodelsefficiently.Therefore,
quantizationcanbehelpfulforRaspberryPi,as
itcanreducethemodelsizeandimprovethe
inferencespeed.However,quantizationcan
alsocauseaccuracyloss,whichcanaffectthe
performanceofGenerativeAItasks.Raspberry
PisupportsTensorFlowLite,whichisaframeworkthatoffersvariousoptionsforquantization,suchaspost-trainingquantization,dynamicrange
quantization,andinteger-onlyquantization.
GoogleAnthos:Thisisaplatformthatallowsthe
deploymentandmanagementofAIapplications
acrossdifferentcloudprovidersandon-premise
environments.Therefore,quantizationcanbe
usefulforGoogleAnthos,asitcanenablethe
portabilityandscalabilityofAImodelsacross
heterogeneoushardwareandsoftwareplatforms.However,quantizationcanalsointroducesome
challengesforGoogleAnthos,suchasensuringtheconsistencyandcompatibilityofquantizedmodelsacrossdifferentframeworksandlanguages.
GoogleAnthossupportsTensorFlow,PyTorch,
andScikit-learn,whichareframeworksthatoffervariousoptionsforquantization,suchasmixed
precisiontraining,quantization-awarefine-tuning,andmodeloptimizationtools.
ApplicationofEdgeandGenerativeAIusecasesintypesofrestaurants
Finedining
?GenerativeAIcanmakenewanddifferentrecipes,menus,andpairingswiththeingredients,cuisines,seasons,andoccasions.Forexample,aGenerativeAImodelcancreateadishwithunusualtastesandtextures,orawinethat
matchesadessert.
?GenerativeAIcanalsomakethefoodlookbetterbymakingartisticand
attractivedesigns,colors,andarrangements.Forexample,aGenerativeAImodelcanuseedibleflowers,sauces,andgarnishestomakeamorevisuallyappealingeffect.
?EdgeComputingcanspeedupandimprovethedataprocessingandcommunicationbetweentherestaurant’sfront-endandbackend,andthecloud.Forexample,anEdgedevicecanhandlethecustomer’sreservation,order,feedback,andpayment,andsendthemtothekitchen,themanagement,andtheloyaltyprogramrightaway.
?EdgeComputingcanalsoprotectthecustomer’sdataandfollowdatarules.Forexample,anEdgedevicecanhideandchangethecustomer’spersonalinformation,liketheirname,email,phonenumber,andpaymentdetails,beforesendingthemtothecloud.
?EdgeComputingcanalsolettherestaurantworkofflineorwithlowconnection,whichcan
maketheservicemoreavailableandreliable.Forexample,anEdgedevicecankeepthe
importantdataandfunctionslocallyandsynchronizethemwiththecloudwhentheconnectionisback.
WithGenerativeAIandEdgeComputing,finediningrestaurantscangivemorenew,fine,andcustomexperiencesforthecustomers,andfaster,correct,andlower-costoperationsfortherestaurants.
Quickserverestaurant
?Usingcomputervisionandnaturallanguageprocessingtoidentifythecustomer’sface,voice,andorder,andsuggestcustomizedrecommendationsandoffers.
?Usingmachinelearningandreinforcementlearningtochange
themenu,theprices,andthepromotionsbasedonthedemand,theseason,andthecompetition.
?Usingsensorsandactuatorstocheckandmanagethe
temperature,thehumidity,andthehygieneofthefoodandtheequipment,andtonotifythestaffofanyissuesoranomalies.
?Usingchatbotsandvirtualassistantstohelpthecustomersandtheemployeeswiththeirquestions,complaints,andsuggestions,andprovidefeedbackandguidance.
?Usingdataanalyticsanddashboardingtomeasureand
showtheperformance,thetrends,andtheoutcomesoftherestaurant,andspotareasforimprovementandinnovation.
11|?2024Cognizant
12|?2024Cognizant
ApplicationofEdgeandGenAIUseCasesinkeyrestaurantfunctions
QSRkiosks
?GenerativeAIcancreatetailor-mademenus,deals,andsuggestionsbasedonthe
customer’sprefrences,behavior,location,andtimeoftheday.Forinstance,aGenerativeAImodelcanrecommendalow-caloriesaladforacustomerwhocaresabouttheirhealthoracombomealforafamilywithchildren.
?GenerativeAIcanalsoimprovetheuserinterfaceandinteractionofthekiosksbycreatingnaturallanguageresponses,voicesynthesis,facialexpressions,andgestures.For
example,aGenerativeAImodelcanwelcomethecustomer,taketheirorder,verifytheirpayment,andexpresstheirgratitudefortheirvisit.
?EdgeComputingcanenablequickerandmoredependabledataprocessingand
communicationbetweenthekiosksandthekitchen,aswellasthecloud.Forinstance,anEdgedevicecanprocessthecustomer’sorder,transmitittothekitchen,andupdatetheinventoryandsalesdatainreal-time.
?EdgeComputingcanalsoprovidemoreprivacyandsecurityforthecustomer’sdata,as
wellascompliancewithdataregulations.Forinstance,anEdgedevicecanencryptand
anonymizethecustomer’spersonalinformation,suchastheirname,email,phonenumber,andpaymentdetails,beforesendingittothecloud.
?EdgeComputingcanalsoallowthekioskstoworkofflineorinlowconnectivityscenarios,whichcanenhancetheavailabilityandresilienceoftheservice.Forinstance,anEdge
devicecanstoretheessentialdataandfunctionslocallyandsynchronizethemwiththecloudwhentheconnectionisrestored.
ByusingGenerativeAIandEdgeComputing,QSRkioskscanoffermorepersonalized,
interactive,andconvenientexperiencesforthecustomers,aswellasmoreefficient,precise,andcost-effectiveoperationsfortherestaurants.
13|?2024Cognizant
RestaurantPOS
Thepoint-of-sale(POS)systemisakeyelementof
anyrestaurant,asithandlesthepayments,orders,
inventory,andcustomerdata.However,traditional
POSsystemsareoftenold-fashioned,slow,andpronetomistakesandbreaches.ByusingEdgeComputingandGenerativeAI,restaurantscanupgradetheir
POSsystemsintosmart,fast,andsecureplatformsthatcanimprovethecustomerexperienceand
businessefficiency.
Quickerandmoredependabledataprocessingandcommunication:EdgeComputingcansolvethe
latencyandbandwidthproblemsthatoftenimpact
cloud-basedPOSsystems,especiallyduringbusy
timesornetworkoutages.Byprocessingthedata
locallyontheEdgedevices,thePOSsystemcan
workquickerandmoredependably,ensuringsmoothpaymentsandorders.
Betterprivacyandsecurityofcustomerdata:EdgeComputingcanalsosafeguardcustomerdatafromunauthorizedaccessorleakage,asitreducesthe
exposureofsensitiveinformationtothecloudortheinternet.Byencryptingandanonymizingthedata
ontheEdgedevices,thePOSsystemcanfollow
dataregulationsandavoididentitytheft,fraud,orcyberattacks.
Improvedcustomizationandinteractionofcustomerservice:GenerativeAIcanenablethePOSsystem
toprovidemorepersonalizedandengaging
serviceforcustomers,byusingnaturallanguage
processing,computervision,andspeechrecognitiontounderstandandrespondtocustomerneedsand
preferences.Forexample,aGenerativeAImodelcanwelcomethecustomerbytheirname,offerthem
relevantdiscountsorloyaltyrewards,recommenditemsbasedontheirorderhistoryordietary
limitations,andgeneratenaturalandhuman-likeconversations.
Enhancedefficiencyandaccuracyofrestaurant
operations:GenerativeAIcanalsohelpthePOS
systemoptimizerestaurantoperations,byusing
dataanalytics,machinelearning,andreinforcementlearningtomonitorandimprovetheperformance,
trends,andoutcomes.Forexample,aGenerativeAImodelcantrackandmanagetheinventory,supplychain,andwaste,predictthedemand,adjustthe
pricesandpromotions,andprovidefeedbackandsuggestionsforthestaff.
14|?2024Cognizant
OneexampleofhowGenerativeAI,AIandEdgeComputingcanhelpimproverestaurantPOSisasfollows:
?Acustomerwalksintoafast-foodrestaurant
andscansaQRcodeonthetablewiththeir
smartphone.TheQRcodedirectsthemtoa
webappthatservesasaPOSsystemforthe
restaurant.ThewebapprunsontheEdge
device,whichisasmallserverlocatedinthe
restaurant.TheEdgedeviceprocessesthedatalocallyandcommunicateswiththecloudonly
whennecessary,ensuringfastandreliableservice.
?Thewebappgreetsthecustomerbytheirnameandshowsthemamenuthatiscustomized
basedontheirpreviousorders,preferences,andallergies.Thecustomercanusevoiceortexttoplacetheirorder,andthewebappusesnaturallanguageprocessingandspeechrecognition
tounderstandandconfirmtheir
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CAQI 187-2021污水生物處理系統(tǒng)能效測算方法
- 催化師面試題及答案
- 防汛救援面試題及答案
- 急吐血面試題及答案
- 光明漁業(yè)面試題及答案
- 委托代理協(xié)議管理制度
- 新質(zhì)生產(chǎn)力提升
- 2025年小學(xué)月考總結(jié)模版
- T/CADBM 63-2022建筑室內(nèi)窗飾產(chǎn)品百葉簾
- 工人管理果園合同范本
- 有趣的漢字《甲骨文》課件
- DB11-T 1123-2023 公共職業(yè)介紹和職業(yè)指導(dǎo)服務(wù)規(guī)范
- 實(shí)習(xí)報告總結(jié)10000字
- 第8課《良師相伴 亦師亦友》第1框《良師相伴助力成長》-【中職專用】《心理健康與職業(yè)生涯》同步課堂課件
- 2023年湖南省高考生物真題卷和答案
- MOOC 跨文化交際-蘇州大學(xué) 中國大學(xué)慕課答案
- 科幻小說賞析與創(chuàng)意寫作智慧樹知到期末考試答案2024年
- 注塑硫化什么工藝
- 小學(xué)道德與法治課堂情境創(chuàng)設(shè)策略研究開題報告
- 2024年湖北宜昌高新區(qū)社區(qū)專職工作人員網(wǎng)格員招聘筆試參考題庫附帶答案詳解
- 【湘少版】(三起)三年級英語下冊(全冊)配套練習(xí)
評論
0/150
提交評論