




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西河池市、柳州市2024年中考數學模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.2.當a>0時,下列關于冪的運算正確的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a53.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,則平移的距離和旋轉角的度數分別為()A.4,30° B.2,60° C.1,30° D.3,60°4.如圖,在中,.點是的中點,連結,過點作,分別交于點,與過點且垂直于的直線相交于點,連結.給出以下四個結論:①;②點是的中點;③;④,其中正確的個數是()A.4 B.3 C.2 D.15.若分式有意義,則的取值范圍是()A.; B.; C.; D..6.在△ABC中,點D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.7.若,則()A. B. C. D.8.如圖,在矩形ABCD中,P、R分別是BC和DC上的點,E、F分別是AP和RP的中點,當點P在BC上從點B向點C移動,而點R不動時,下列結論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點P的位置有關9.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結論:①若C,O兩點關于AB對稱,則OA=;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④10.若ab<0,則正比例函數y=ax與反比例函數y=在同一坐標系中的大致圖象可能是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.與是位似圖形,且對應面積比為4:9,則與的位似比為______.12.分解因式:=__________________.13.如圖,在3×3的正方形網格中,點A,B,C,D,E,F,G都是格點,從C,D,E,F,G五個點中任意取一點,以所取點及AB為頂點畫三角形,所畫三角形時等腰三角形的概率是_____.14.如圖,等邊三角形ABC內接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.15.如圖,點A是反比例函數y=﹣(x<0)圖象上的點,分別過點A向橫軸、縱軸作垂線段,與坐標軸恰好圍成一個正方形,再以正方形的一組對邊為直徑作兩個半圓,其余部分涂上陰影,則陰影部分的面積為______.16.計算兩個兩位數的積,這兩個數的十位上的數字相同,個位上的數字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你發現上面每個數的積的規律是:十位數字乘以十位數字加一的積作為結果的千位和百位,兩個個位數字相乘的積作為結果的,請寫出一個符合上述規律的算式.(2)設其中一個數的十位數字為a,個位數字為b,請用含a,b的算式表示這個規律.17.已知正方形ABCD,AB=1,分別以點A、C為圓心畫圓,如果點B在圓A外,且圓A與圓C外切,那么圓C的半徑長r的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖所示,在△ABC中,BO、CO是角平分線.∠ABC=50°,∠ACB=60°,求∠BOC的度數,并說明理由.題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“∠A=70°”,求∠BOC的度數.若∠A=n°,求∠BOC的度數.19.(5分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.20.(8分)如圖1,經過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.21.(10分)2019年8月.山西龍城將迎來全國第二屆青年運動會,盛會將至,整個城市已經進入了全力準備的狀態.太職學院足球場作為一個重要比賽場館.占地面積約24300平方米.總建筑面積4790平方米,設有2476個座位,整體建筑簡潔大方,獨具特色.2018年3月15日該場館如期開工,某施工隊負責安裝該場館所有座位,在安裝完476個座位后,采用新技術,效率比原來提升了.結來比原計劃提前4天完成安裝任務.求原計劃每天安裝多少個座位.22.(10分)如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.求證:△ADE∽△ABC;若AD=3,AB=5,求的值.23.(12分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數y=的圖象經過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經過的路徑長.24.(14分)如圖,一次函數的圖象與反比例函數的圖象交于,B
兩點.(1)求一次函數與反比例函數的解析式;(2)結合圖形,直接寫出一次函數大于反比例函數時自變量x的取值范圍.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.2、A【解析】
直接利用零指數冪的性質以及負指數冪的性質、冪的乘方運算法則分別化簡得出答案.【詳解】A選項:a0=1,正確;B選項:a﹣1=,故此選項錯誤;C選項:(﹣a)2=a2,故此選項錯誤;D選項:(a2)3=a6,故此選項錯誤;故選A.【點睛】考查了零指數冪的性質以及負指數冪的性質、冪的乘方運算,正確掌握相關運算法則是解題關鍵.3、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉角的度數分別為:2,60°故選B.考點:1、平移的性質;2、旋轉的性質;3、等邊三角形的判定4、C【解析】
用特殊值法,設出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關線段的長;易證△GAB≌△DBC,求出相關線段的長;再證AG∥BC,求出相關線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【詳解】解:由題意知,△ABC是等腰直角三角形,設AB=BC=2,則AC=2,∵點D是AB的中點,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,FE=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質以及等腰直角三角形的相關性質,中等難度,注意合理的運用特殊值法是解題關鍵.5、B【解析】
分式的分母不為零,即x-2≠1.【詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【點睛】考查了分式有意義的條件,(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.6、D【解析】
如圖,∵AD=1,BD=3,∴,當時,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據選項A、B、C的條件都不能推出DE∥BC,故選D.7、D【解析】
等式左邊為非負數,說明右邊,由此可得b的取值范圍.【詳解】解:,
,解得故選D.【點睛】本題考查了二次根式的性質:,.8、C【解析】試題分析:連接AR,根據勾股定理得出AR=的長不變,根據三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點:1、矩形性質,2、勾股定理,3、三角形的中位線9、D【解析】分析:①先根據直角三角形30°的性質和勾股定理分別求AC和AB,由對稱的性質可知:AB是OC的垂直平分線,所以
②當OC經過AB的中點E時,OC最大,則C、O兩點距離的最大值為4;
③如圖2,當∠ABO=30°時,易證四邊形OACB是矩形,此時AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據四點共圓可知:A、C、B、O四點共圓,則AB為直徑,由垂徑定理相關推論:平分弦(不是直徑)的直徑垂直于這條弦,但當這條弦也是直徑時,即OC是直徑時,AB與OC互相平分,但AB與OC不一定垂直;
④如圖3,半徑為2,圓心角為90°,根據弧長公式進行計算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點關于AB對稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點為E,連接OE、CE,∵∴當OC經過點E時,OC最大,則C.O兩點距離的最大值為4;所以②正確;③如圖2,當時,∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點D運動路徑是:以O為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點睛:屬于三角形的綜合體,考查了直角三角形的性質,直角三角形斜邊上中線的性質,軸對稱的性質,弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.10、D【解析】
根據ab<0及正比例函數與反比例函數圖象的特點,可以從a>0,b<0和a<0,b>0兩方面分類討論得出答案.【詳解】解:∵ab<0,∴分兩種情況:(1)當a>0,b<0時,正比例函數y=ax數的圖象過原點、第一、三象限,反比例函數圖象在第二、四象限,無此選項;(2)當a<0,b>0時,正比例函數的圖象過原點、第二、四象限,反比例函數圖象在第一、三象限,選項D符合.故選D【點睛】本題主要考查了反比例函數的圖象性質和正比例函數的圖象性質,要掌握它們的性質才能靈活解題.二、填空題(共7小題,每小題3分,滿分21分)11、2:1【解析】
由相似三角形的面積比等于相似比的平方,即可求得與的位似比.【詳解】解與是位似圖形,且對應面積比為4:9,與的相似比為2:1,故答案為:2:1.【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.12、【解析】
原式提取2,再利用完全平方公式分解即可.【詳解】原式【點睛】先考慮提公因式法,再用公式法進行分解,最后考慮十字相乘,差項補項等方法.13、.【解析】
找出從C,D,E,F,G五個點中任意取一點組成等腰三角形的個數,再根據概率公式即可得出結論.【詳解】∵從C,D,E,F,G五個點中任意取一點共有5種情況,其中A、B、C;A、B、F兩種取法,可使這三定組成等腰三角形,∴所畫三角形時等腰三角形的概率是,故答案是:.【點睛】考查的是概率公式,熟記隨機事件A的概率P(A)=事件A可能出現的結果數與所有可能出現的結果數的商是解答此題的關鍵.14、【解析】
分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關鍵是求圓心角的度數.本題考查組合圖形的求法.扇形面積公式等.詳解:連結OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質,扇形的面積,三角形的面積等知識點的應用,關鍵是求出∠AOC的度數,主要考查學生綜合運用定理進行推理和計算的能力.15、4﹣π【解析】
由題意可以假設A(-m,m),則-m2=-4,求出點A坐標即可解決問題.【詳解】由題意可以假設A(-m,m),則-m2=-4,∴m=≠±2,∴m=2,∴S陰=S正方形-S圓=4-π,故答案為4-π.【點睛】本題考查反比例函數圖象上的點的特征、正方形的性質、圓的面積公式等知識,解題的關鍵是靈活運用所學知識解決問題16、(1)十位和個位,44×46=2024;(2)10a(a+1)+b(1﹣b)【解析】分析:(1)、根據題意得出其一般性的規律,從而得出答案;(2)、利用代數式表示出其一般規律得出答案.詳解:(1)由已知等式知,每個數的積的規律是:十位數字乘以十位數字加一的積作為結果的千位和百位,兩個個位數字相乘的積作為結果的十位和個位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).點睛:本題主要考查的是規律的發現與整理,屬于基礎題型.找出一般性的規律是解決這個問題的關鍵.17、﹣1<r<.【解析】
首先根據題意求得對角線AC的長,設圓A的半徑為R,根據點B在圓A外,得出0<R<1,則-1<-R<0,再根據圓A與圓C外切可得R+r=,利用不等式的性質即可求出r的取值范圍.【詳解】∵正方形ABCD中,AB=1,
∴AC=,
設圓A的半徑為R,
∵點B在圓A外,
∴0<R<1,
∴-1<-R<0,
∴-1<-R<.
∵以A、C為圓心的兩圓外切,
∴兩圓的半徑的和為,
∴R+r=,r=-R,
∴-1<r<.
故答案為:-1<r<.【點睛】本題考查了圓與圓的位置關系,點與圓的位置關系,正方形的性質,勾股定理,不等式的性質.掌握位置關系與數量之間的關系是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)125°;(2)125°;(3)∠BOC=90°+n°.【解析】
如圖,由BO、CO是角平分線得∠ABC=2∠1,∠ACB=2∠2,再利用三角形內角和得到∠ABC+∠ACB+∠A=180°,則2∠1+2∠2+∠A=180°,接著再根據三角形內角和得到∠1+∠2+∠BOC=180°,利用等式的性質進行變換可得∠BOC=90°+∠A,然后根據此結論分別解決(1)、(2)、(3).【詳解】如圖,∵BO、CO是角平分線,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+×70°=125°;(2)∠BOC=90°+∠A=125°;(3)∠BOC=90°+n°.【點睛】本題考查了三角形內角和定理:三角形內角和是180°.主要用在求三角形中角的度數:①直接根據兩已知角求第三個角;②依據三角形中角的關系,用代數方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.19、(1)矩形的周長為4m;(2)矩形的面積為1.【解析】
(1)根據題意和矩形的周長公式列出代數式解答即可.(2)根據題意列出矩形的面積,然后把m=7,n=4代入進行計算即可求得.【詳解】(1)矩形的長為:m﹣n,矩形的寬為:m+n,矩形的周長為:2[(m-n)+(m+n)]=4m;(2)矩形的面積為S=(m+n)(m﹣n)=m2-n2,當m=7,n=4時,S=72-42=1.【點睛】本題考查了矩形的周長與面積、列代數式問題、平方差公式等,解題的關鍵是根據題意和矩形的性質列出代數式解答.20、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直線解析式可求得B點坐標,由A、B坐標,利用待定系數法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設出C點坐標,利用C點坐標可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關于C點坐標的方程,可求得C點坐標;(3)設MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標,可求得直線BN的解析式,聯立直線BM與拋物線解析式可求得M點坐標,過M作MG⊥y軸于點G,由B、C的坐標可求得OB和OC的長,由相似三角形的性質可求得的值,當點P在第一象限內時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標;當P點在第三象限時,同理可求得P點坐標.【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設直線BN解析式為y=kx+,把B點坐標代入可得2=2k+,解得k=,∴直線BN的解析式為,聯立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標為(,)或(﹣,).【點睛】本題為二次函數的綜合應用,涉及待定系數法、三角形的面積、二次函數的性質、全等三角形的判定和性質、相似三角形的判定和性質、方程思想及分類討論思想等知識.在(1)中注意待定系數法的應用,在(2)中用C點坐標表示出△BOC的面積是解題的關鍵,在(3)中確定出點P的位置,構造相似三角形是解題的關鍵,注意分兩種情況.21、原計劃每天安裝100個座位.【解析】
根據題意先設原計劃每天安裝x個座位,列出方程再求解.【詳解】解:設原計劃每天安裝個座位,采用新技術后每天安裝個座位,由題意得:.解得:.經檢驗:是原方程的解.答:原計劃每天安裝100個座位.【點睛】此題重點考查學生對分式方程的實際應用,掌握分式方程的解法是解題的關鍵.22、(1)證明見解析;(2).【解析】
(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,從而可證明∠AED=∠ACB,進而可證明△ADE∽△ABC;(2)△ADE∽△ABC,,又易證△EAF∽△CAG,所以,從而可求解.【詳解】(1)∵AG⊥BC,AF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年同學聚會策劃方案
- 2025年第一季渣打香港中小企領先營商指數報告
- 2025年電工收縮帶項目可行性研究報告
- 2025年玄米茶項目可行性研究報告
- 2025年牛蹄筋串項目可行性研究報告
- 2025春新版三年級下冊科學?必背知識點考點
- 荊楚理工學院《管理統計》2023-2024學年第二學期期末試卷
- 江西工程學院《聲樂(2)》2023-2024學年第一學期期末試卷
- 珠海科技學院《體育與生存》2023-2024學年第一學期期末試卷
- 湖南工程學院《英語視聽說四》2023-2024學年第二學期期末試卷
- 0-3歲嬰幼兒親子關系與互動(杭州師范大學)知到智慧樹章節答案
- 慢病管理中心工作
- 國開電大《中國法律史》形考任務1-3
- 形勢與政策(貴州財經大學)知到智慧樹章節答案
- 層流手術室的管理
- 機電安裝安全措施方案
- 文化產業股東權益合作協議書
- 中華人民共和國學前教育法-知識培訓
- 康復科自查報告及整改措施
- 2024年四川省宜賓市中考英語試題含解析
- 多式聯運智慧物流平臺構建方案
評論
0/150
提交評論