廣西北部灣經濟區四市同城2024屆中考適應性考試數學試題含解析_第1頁
廣西北部灣經濟區四市同城2024屆中考適應性考試數學試題含解析_第2頁
廣西北部灣經濟區四市同城2024屆中考適應性考試數學試題含解析_第3頁
廣西北部灣經濟區四市同城2024屆中考適應性考試數學試題含解析_第4頁
廣西北部灣經濟區四市同城2024屆中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西北部灣經濟區四市同城2024屆中考適應性考試數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,拋物線y=ax2+bx+c(a≠0)過點(1,0)和點(0,﹣2),且頂點在第三象限,設P=a﹣b+c,則P的取值范圍是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<02.如圖,在平面直角坐標系xOy中,A(2,0),B(0,2),⊙C的圓心為點C(﹣1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于E點,則△ABE面積的最小值是()A.2B.83C.2+23.下列各式計算正確的是()A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b24.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規律,則第⑦個圖形中的鮮花盆數為()A.37 B.38 C.50 D.515.如果零上2℃記作+2℃,那么零下3℃記作()A.-3℃ B.-2℃ C.+3℃ D.+2℃6.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.7.計算的結果是().A. B. C. D.8.有一組數據:3,4,5,6,6,則這組數據的平均數、眾數、中位數分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,69.下列運算正確的是()A.3a2﹣2a2=1 B.a2?a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b210.學完分式運算后,老師出了一道題“計算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式.其中正確的是()A.小明 B.小亮 C.小芳 D.沒有正確的11.剪紙是水族的非物質文化遺產之一,下列剪紙作品是中心對稱圖形的是()A. B.C. D.12.如圖,在平面直角坐標系中,直線y=k1x+2(k1≠0)與x軸交于點A,與y軸交于點B,與反比例函數y=在第二象限內的圖象交于點C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,半圓O的直徑AB=2,弦CD∥AB,∠COD=90°,則圖中陰影部分的面積為_____.14.計算:的結果是_____.15.如圖,點D為矩形OABC的AB邊的中點,反比例函數的圖象經過點D,交BC邊于點E.若△BDE的面積為1,則k=________16.已知AB=AC,tanA=2,BC=5,則△ABC的面積為_______________.17.如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數k的取值范圍是.18.已知一個斜坡的坡度,那么該斜坡的坡角的度數是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,點D,E分別在邊AB,AC上,∠AED=∠B,射線AG分別交線段DE,BC于點F,G,且.求證:△ADF∽△ACG;若,求的值.20.(6分)已知拋物線y=x2+bx+c經過點A(0,6),點B(1,3),直線l1:y=kx(k≠0),直線l2:y=-x-2,直線l1經過拋物線y=x2+bx+c的頂點P,且l1與l2相交于點C,直線l2與x軸、y軸分別交于點D、E.若把拋物線上下平移,使拋物線的頂點在直線l2上(此時拋物線的頂點記為M),再把拋物線左右平移,使拋物線的頂點在直線l1上(此時拋物線的頂點記為N).(1)求拋物y=x2+bx+c線的解析式.(2)判斷以點N為圓心,半徑長為4的圓與直線l2的位置關系,并說明理由.(3)設點F、H在直線l1上(點H在點F的下方),當△MHF與△OAB相似時,求點F、H的坐標(直接寫出結果).21.(6分)如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.22.(8分)計算:﹣14﹣2×(﹣3)2+÷(﹣)如圖,小林將矩形紙片ABCD沿折痕EF翻折,使點C、D分別落在點M、N的位置,發現∠EFM=2∠BFM,求∠EFC的度數.23.(8分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數據后,繪制的兩幅不完整的統計圖.請根據圖中的信息,解答下列問題:(1)調查了________名學生;(2)補全條形統計圖;(3)在扇形統計圖中,“乒乓球”部分所對應的圓心角度數為________;(4)學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.24.(10分)某校為了解學生的安全意識情況,在全校范圍內隨機抽取部分學生進行問卷調查,根據調查結果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統計圖.根據以上信息,解答下列問題:(1)這次調查一共抽取了名學生,其中安全意識為“很強”的學生占被調查學生總數的百分比是;(2)請將條形統計圖補充完整;(3)該校有1800名學生,現要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據調查結果,估計全校需要強化安全教育的學生約有名.25.(10分)央視熱播節目“朗讀者”激發了學生的閱讀興趣,某校為滿足學生的閱讀需求,欲購進一批學生喜歡的圖書,學校組織學生會成員隨機抽取部分學生進行問卷調查,被調查學生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據調查結果繪制了統計圖(未完成),請根據圖中信息,解答下列問題:此次共調查了名學生;將條形統計圖1補充完整;圖2中“小說類”所在扇形的圓心角為度;若該校共有學生2000人,估計該校喜歡“社科類”書籍的學生人數.26.(12分)如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.填空:______;證明:;當四邊形ABCD的面積和的面積相等時,求點P的坐標.27.(12分)如圖,AB是⊙O直徑,BC⊥AB于點B,點C是射線BC上任意一點,過點C作CD切⊙O于點D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

解:∵二次函數的圖象開口向上,∴a>1.∵對稱軸在y軸的左邊,∴<1.∴b>1.∵圖象與y軸的交點坐標是(1,﹣2),過(1,1)點,代入得:a+b﹣2=1.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,∵b>1,∴b=2﹣a>1.∴a<2.∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.故選A.【點睛】本題考查二次函數圖象與系數的關系,利用數形結合思想解題是本題的解題關鍵.2、C【解析】當⊙C與AD相切時,△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.3、C【解析】

根據合并同類項、冪的乘方、同底數冪的乘法、完全平方公式逐項計算即可.【詳解】A.a+3a=4a,故不正確;B.(–a2)3=(-a)6,故不正確;C.a3·a4=a7,故正確;D.(a+b)2=a2+2ab+b2,故不正確;故選C.【點睛】本題考查了合并同類項、冪的乘方、同底數冪的乘法、完全平方公式,熟練掌握各知識點是解答本題的關鍵.4、D【解析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數為則第⑥個圖形中的鮮花盆數為故選C.5、A【解析】

一對具有相反意義的量中,先規定其中一個為正,則另一個就用負表示.【詳解】∵“正”和“負”相對,∴如果零上2℃記作+2℃,那么零下3℃記作-3℃.故選A.6、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯系是解題的關鍵.7、D【解析】

根據同底數冪的乘除法運算進行計算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點睛】本題主要考查同底數冪的乘除運算,解題的關鍵是知道:同底數冪相乘,底數不變,指數相加.8、C【解析】

解:在這一組數據中6是出現次數最多的,故眾數是6;而將這組數據從小到大的順序排列3,4,5,6,6,處于中間位置的數是5,平均數是:(3+4+5+6+6)÷5=4.8,故選C.【點睛】本題考查眾數;算術平均數;中位數.9、D【解析】

根據合并同類項法則,可知3a2﹣2a2=a2,故不正確;根據同底數冪相乘,可知a2?a3=a5,故不正確;根據完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正確;根據完全平方公式,可知(a+b)2=a2+2ab+b2,正確.故選D.【詳解】請在此輸入詳解!10、C【解析】試題解析:=====1.所以正確的應是小芳.故選C.11、D【解析】

根據把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【點睛】此題主要考查了中心對稱圖形,關鍵是掌握中心對稱圖形的定義.12、C【解析】

如圖,作CH⊥y軸于H.通過解直角三角形求出點C坐標即可解決問題.【詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點C(﹣1,3)代入,得到k2=﹣3,故選C.【點睛】本題考查反比例函數于一次函數的交點問題,銳角三角函數等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S陰影=S扇形COD==.故答案為.14、【解析】試題分析:先進行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減15、1【解析】分析:設D(a,),利用點D為矩形OABC的AB邊的中點得到B(2a,),則E(2a,),然后利用三角形面積公式得到?a?(-)=1,最后解方程即可.詳解:設D(a,),

∵點D為矩形OABC的AB邊的中點,

∴B(2a,),

∴E(2a,),

∵△BDE的面積為1,

∴?a?(-)=1,解得k=1.

故答案為1.點睛:本題考查了反比例函數解析式的應用,根據解析式設出點的坐標,結合矩形的性質并利用平面直角坐標系中點的特征確定三角形的兩邊長,進而結合三角形的面積公式列出方程求解,可確定參數k的取值.16、【解析】

作CD⊥AB,由tanA=2,設AD=x,CD=2x,根據勾股定理AC=x,則BD=,然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+,解得x2=,則S△ABC===【詳解】如圖作CD⊥AB,∵tanA=2,設AD=x,CD=2x,∴AC=x,∴BD=,在Rt△CBD中BC2=BD2+CD2,即52=4x2+,x2=,∴S△ABC===【點睛】此題主要考查三角函數的應用,解題的關鍵是根據題意作出輔助線進行求解.17、-2<k<。【解析】

由圖可知,∠AOB=45°,∴直線OA的解析式為y=x,聯立,消掉y得,,由解得,.∴當時,拋物線與OA有一個交點,此交點的橫坐標為1.∵點B的坐標為(2,0),∴OA=2,∴點A的坐標為().∴交點在線段AO上.當拋物線經過點B(2,0)時,,解得k=-2.∴要使拋物線與扇形OAB的邊界總有兩個公共點,實數k的取值范圍是-2<k<.【詳解】請在此輸入詳解!18、【解析】

坡度=坡角的正切值,據此直接解答.【詳解】解:∵,∴坡角=30°.【點睛】此題主要考查學生對坡度及坡角的理解及掌握.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)1.【解析】(1)欲證明△ADF∽△ACG,由可知,只要證明∠ADF=∠C即可.(2)利用相似三角形的性質得到,由此即可證明.【解答】(1)證明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.20、(1);(2)以點為圓心,半徑長為4的圓與直線相離;理由見解析;(3)點、的坐標分別為、或、或、.【解析】

(1)分別把A,B點坐標帶入函數解析式可求得b,c即可得到二次函數解析式(2)先求出頂點的坐標,得到直線解析式,再分別求得MN的坐標,再求出NC比較其與4的大小可得圓與直線的位置關系.(3)由題得出tanBAO=,分情況討論求得F,H坐標.【詳解】(1)把點、代入得,解得,,∴拋物線的解析式為.(2)由得,∴頂點的坐標為,把代入得解得,∴直線解析式為,設點,代入得,∴得,設點,代入得,∴得,由于直線與軸、軸分別交于點、∴易得、,∴,∴,∵點在直線上,∴,∴,即,∵,∴以點為圓心,半徑長為4的圓與直線相離.(3)點、的坐標分別為、或、或、.C(-1,-1),A(0,6),B(1,3)可得tanBAO=,情況1:tanCF1M==,CF1=9,MF1=6,H1F1=5,F1(8,8),H1(3,3);情況2:F2(-5,-5),H2(-10,-10)(與情況1關于L2對稱);情況3:F3(8,8),H3(-10,-10)(此時F3與F1重合,H3與H2重合).【點睛】本題考查的知識點是二次函數綜合題,解題的關鍵是熟練的掌握二次函數綜合題.21、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設P(m,m2-4m+3),根據OE的解析式表示點G的坐標,表示PG的長,根據面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構建全等三角形,證明△OMP≌△PNF,根據OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標為(,)或(,);綜上所述,點P的坐標是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數綜合題,主要考查了二次函數的綜合應用,相似三角形的判定與性質以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.22、(1)﹣10;(2)∠EFC=72°.【解析】

(1)原式利用乘方的意義,立方根定義,乘除法則及家減法法則計算即可;(2)根據折疊的性質得到一對角相等,再由已知角的關系求出結果即可.【詳解】(1)原式=﹣1﹣18+9=﹣10;(2)由折疊得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴設∠EFM=∠EFC=x,則有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+x=180°,解得:x=72°,則∠EFC=72°.【點睛】本題考查了實數的性質及平行線的性質,解題的關鍵是熟練掌握實數的運算法則及平行線的性質.23、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數除以它所占的百分比可得總共的學生數;(2)用學生的總人數乘以各部分所占的百分比,可得最喜歡足球的人數和其他的人數,即可把條形統計圖補充完整;(3)根據圓心角的度數=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總人數=15÷30%=50(名)故答案為50;(2)足球項目所占的人數=50×18%=9(名),所以其它項目所占人數=50﹣15﹣9﹣16=10(名)補全條形統計圖如圖所示:(3)“乒乓球”部分所對應的圓心角度數=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統計圖和扇形統計圖的綜合運用,概率的計算.讀懂統計圖,從不同的統計圖中得到必要的信息及掌握概率的計算方法是解決問題的關鍵.24、(1)120,30%;(2)作圖見解析;(3)1.【解析】試題分析:(1)用安全意識分“一般”的人數除以安全意識分“一般”的人數所占的百分比即可得這次調查一共抽取的學生人數;用安全意識分“很強”的人數除以這次調查一共抽取的學生人數即可得安全意識“很強”的學生占被調查學生總數的百分比;(2)用這次調查一共抽取的學生人數乘以安全意識分“較強”的人數所占的百分比即可得安全意識分“較強”的人數,在條形統計圖上畫出即可;(3)用總人數乘以安全意識為“淡薄”、“一般”的學生一共所占的百分比即可得全校需要強化安全教育的學生的人數.試題解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,補全統計圖如下:(3)1800×=1人.考點:條形統計圖;扇形統計圖;用樣本估計總體.25、(1)200;(2)見解析;(3)126°;(4)240人.【解析】

(1)根據文史類的人數以及文史類所占的百分比即可求出總人數(2)根據總人數以及生活類的百分比即可求出生活類的人數以及小說類的人數;(3)根據小說類的百分比即可求出圓心角的度數;(4)利用樣本中喜歡社科類書籍的百分比來估計總體中的百分比,從而求出喜歡社科類書籍的學生人數【詳解】(1)∵喜歡文史類的人數為76人,占總人數的38%,∴此次調查的總人數為:76÷38%=200人,故答案為200;(2)∵喜歡生活類書籍的人數占總人數的15%,∴喜歡生活類書籍的人數為:200×15%=30人,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論