2024-2025學(xué)年高中數(shù)學(xué) 第2章 解析幾何初步 2 圓與圓的方程 2.1 圓的標(biāo)準(zhǔn)方程(教師用書)教學(xué)設(shè)計(jì) 北師大版必修2_第1頁
2024-2025學(xué)年高中數(shù)學(xué) 第2章 解析幾何初步 2 圓與圓的方程 2.1 圓的標(biāo)準(zhǔn)方程(教師用書)教學(xué)設(shè)計(jì) 北師大版必修2_第2頁
2024-2025學(xué)年高中數(shù)學(xué) 第2章 解析幾何初步 2 圓與圓的方程 2.1 圓的標(biāo)準(zhǔn)方程(教師用書)教學(xué)設(shè)計(jì) 北師大版必修2_第3頁
2024-2025學(xué)年高中數(shù)學(xué) 第2章 解析幾何初步 2 圓與圓的方程 2.1 圓的標(biāo)準(zhǔn)方程(教師用書)教學(xué)設(shè)計(jì) 北師大版必修2_第4頁
2024-2025學(xué)年高中數(shù)學(xué) 第2章 解析幾何初步 2 圓與圓的方程 2.1 圓的標(biāo)準(zhǔn)方程(教師用書)教學(xué)設(shè)計(jì) 北師大版必修2_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年高中數(shù)學(xué)第2章解析幾何初步2圓與圓的方程2.1圓的標(biāo)準(zhǔn)方程(教師用書)教學(xué)設(shè)計(jì)北師大版必修2授課內(nèi)容授課時(shí)數(shù)授課班級(jí)授課人數(shù)授課地點(diǎn)授課時(shí)間教學(xué)內(nèi)容北師大版必修2第2章解析幾何初步2圓與圓的方程2.1圓的標(biāo)準(zhǔn)方程。本節(jié)課將引導(dǎo)學(xué)生掌握?qǐng)A的標(biāo)準(zhǔn)方程的推導(dǎo)過程,學(xué)會(huì)利用圓的標(biāo)準(zhǔn)方程進(jìn)行圓的幾何性質(zhì)研究,包括圓心坐標(biāo)、半徑、圓上點(diǎn)的坐標(biāo)等。通過實(shí)例分析,讓學(xué)生理解圓方程的應(yīng)用,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力和解決問題的能力。核心素養(yǎng)目標(biāo)本節(jié)課旨在培養(yǎng)學(xué)生的數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模、直觀想象和數(shù)學(xué)運(yùn)算等核心素養(yǎng)。通過圓的標(biāo)準(zhǔn)方程的學(xué)習(xí),學(xué)生能夠抽象出圓的幾何特征,運(yùn)用邏輯推理構(gòu)建圓的方程模型;通過直觀想象,學(xué)生能夠識(shí)別和應(yīng)用圓的幾何性質(zhì);同時(shí),通過數(shù)學(xué)運(yùn)算,學(xué)生能夠熟練求解與圓相關(guān)的問題,提升數(shù)學(xué)應(yīng)用能力和解決問題的能力。學(xué)習(xí)者分析1.學(xué)生已經(jīng)掌握的相關(guān)知識(shí):

學(xué)生在進(jìn)入本節(jié)課之前,已具備平面幾何的基礎(chǔ)知識(shí),包括點(diǎn)、線、面的概念,以及直線方程和二元二次方程的基本解法。此外,學(xué)生應(yīng)該已經(jīng)學(xué)習(xí)了坐標(biāo)系和坐標(biāo)軸上的點(diǎn),以及直線與圓的位置關(guān)系。

2.學(xué)生的學(xué)習(xí)興趣、能力和學(xué)習(xí)風(fēng)格:

高中學(xué)生對(duì)數(shù)學(xué)學(xué)科的興趣參差不齊,部分學(xué)生對(duì)解析幾何較為感興趣,因?yàn)槠渲庇^性和應(yīng)用性。學(xué)生的學(xué)習(xí)能力方面,部分學(xué)生可能具有較強(qiáng)的邏輯思維和抽象思維能力,能夠快速理解并應(yīng)用圓的標(biāo)準(zhǔn)方程。而部分學(xué)生可能在空間想象能力和運(yùn)算能力上存在一定困難。學(xué)習(xí)風(fēng)格上,學(xué)生有的偏好直觀教學(xué),有的則更傾向于通過公式推導(dǎo)來理解概念。

3.學(xué)生可能遇到的困難和挑戰(zhàn):

在學(xué)習(xí)圓的標(biāo)準(zhǔn)方程時(shí),學(xué)生可能面臨以下困難和挑戰(zhàn):一是理解和推導(dǎo)圓的標(biāo)準(zhǔn)方程,特別是對(duì)于不同類型的圓方程(如x2+y2=r2和(x-h)2+(y-k)2=r2)的推導(dǎo)過程;二是將圓的方程與圓的幾何性質(zhì)聯(lián)系起來,如圓心坐標(biāo)、半徑和圓上點(diǎn)的坐標(biāo)之間的關(guān)系;三是解決實(shí)際問題,如利用圓的方程解決與圓相關(guān)的幾何問題。此外,學(xué)生在運(yùn)算過程中可能遇到計(jì)算錯(cuò)誤或難以處理復(fù)雜方程的問題。教學(xué)資源準(zhǔn)備1.教材:確保每位學(xué)生都有北師大版必修2教材,特別是第2章解析幾何初步2.1圓與圓的方程部分。

2.輔助材料:準(zhǔn)備圓的標(biāo)準(zhǔn)方程推導(dǎo)過程的動(dòng)畫或視頻,以及圓的幾何性質(zhì)相關(guān)的圖片和圖表,幫助學(xué)生直觀理解。

3.教學(xué)工具:準(zhǔn)備幾何畫板等軟件,以便進(jìn)行動(dòng)態(tài)演示和輔助教學(xué)。

4.教室布置:設(shè)置黑板或電子白板,以便展示方程推導(dǎo)過程和幾何圖形,同時(shí)安排學(xué)生分組討論區(qū),鼓勵(lì)合作學(xué)習(xí)。教學(xué)流程1.導(dǎo)入新課(用時(shí)5分鐘)

-教師展示生活中常見的圓形物體圖片,如硬幣、車輪等,引導(dǎo)學(xué)生回顧平面幾何中關(guān)于圓的基本概念和性質(zhì)。

-提問:同學(xué)們還記得圓的定義和圓的基本性質(zhì)嗎?如何用坐標(biāo)軸上的點(diǎn)來表示圓上的點(diǎn)?

-通過提問激發(fā)學(xué)生的學(xué)習(xí)興趣,引導(dǎo)學(xué)生回顧舊知識(shí),為新課的導(dǎo)入做好鋪墊。

2.新課講授(用時(shí)20分鐘)

-圓的標(biāo)準(zhǔn)方程推導(dǎo)

1.教師利用多媒體展示圓的定義和性質(zhì),引導(dǎo)學(xué)生理解圓心、半徑與圓上點(diǎn)的關(guān)系。

2.通過動(dòng)畫演示,展示圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程,讓學(xué)生直觀理解方程的來源。

3.學(xué)生跟隨教師的推導(dǎo)過程,嘗試自己推導(dǎo)圓的標(biāo)準(zhǔn)方程,并總結(jié)推導(dǎo)步驟。

-圓的標(biāo)準(zhǔn)方程的應(yīng)用

1.教師展示幾個(gè)典型的圓的標(biāo)準(zhǔn)方程,讓學(xué)生觀察并分析方程的特點(diǎn)。

2.引導(dǎo)學(xué)生思考如何從圓的標(biāo)準(zhǔn)方程中獲取圓心坐標(biāo)、半徑等信息。

3.學(xué)生嘗試根據(jù)圓的標(biāo)準(zhǔn)方程繪制圓的圖形,并標(biāo)注圓心和半徑。

-圓的幾何性質(zhì)與方程的關(guān)系

1.教師引導(dǎo)學(xué)生回顧圓的幾何性質(zhì),如圓心、半徑、圓上點(diǎn)的坐標(biāo)等。

2.通過實(shí)例分析,讓學(xué)生理解圓的幾何性質(zhì)與圓的標(biāo)準(zhǔn)方程之間的關(guān)系。

3.學(xué)生嘗試根據(jù)圓的幾何性質(zhì)推導(dǎo)圓的標(biāo)準(zhǔn)方程,并驗(yàn)證推導(dǎo)結(jié)果。

3.實(shí)踐活動(dòng)(用時(shí)10分鐘)

-實(shí)踐活動(dòng)一:學(xué)生根據(jù)給定的圓的標(biāo)準(zhǔn)方程,繪制圓的圖形,并標(biāo)注圓心和半徑。

1.教師給出幾個(gè)圓的標(biāo)準(zhǔn)方程,如x2+y2=4,(x-1)2+(y+2)2=9等。

2.學(xué)生在練習(xí)本上繪制圓的圖形,并標(biāo)注圓心和半徑。

-實(shí)踐活動(dòng)二:學(xué)生根據(jù)圓的幾何性質(zhì),推導(dǎo)圓的標(biāo)準(zhǔn)方程。

1.教師給出幾個(gè)圓的幾何性質(zhì),如圓心坐標(biāo)為(2,3),半徑為5等。

2.學(xué)生嘗試根據(jù)這些幾何性質(zhì)推導(dǎo)出圓的標(biāo)準(zhǔn)方程,并驗(yàn)證推導(dǎo)結(jié)果。

-實(shí)踐活動(dòng)三:學(xué)生解決與圓相關(guān)的實(shí)際問題。

1.教師給出幾個(gè)實(shí)際問題,如求圓的面積、周長等。

2.學(xué)生利用圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)解決這些問題。

4.學(xué)生小組討論(用時(shí)10分鐘)

-方程推導(dǎo)的步驟和方法

1.學(xué)生討論圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程,總結(jié)推導(dǎo)步驟。

2.學(xué)生分享自己在推導(dǎo)過程中的困惑和疑問,教師給予解答和指導(dǎo)。

-圓的幾何性質(zhì)與方程的關(guān)系

1.學(xué)生討論圓的幾何性質(zhì)與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,分享自己的理解。

2.教師引導(dǎo)學(xué)生從不同角度分析這個(gè)問題,如從幾何角度、代數(shù)角度等。

-實(shí)際問題的解決方法

1.學(xué)生討論解決與圓相關(guān)的實(shí)際問題的方法,分享自己的解題思路。

2.教師鼓勵(lì)學(xué)生從多角度思考問題,提高解題能力。

5.總結(jié)回顧(用時(shí)5分鐘)

-教師總結(jié)本節(jié)課的主要內(nèi)容,強(qiáng)調(diào)圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程、應(yīng)用和幾何性質(zhì)。

-教師舉例說明本節(jié)課的重難點(diǎn),如圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程、圓的幾何性質(zhì)與方程的關(guān)系等。

-教師引導(dǎo)學(xué)生回顧本節(jié)課的學(xué)習(xí)內(nèi)容,強(qiáng)調(diào)掌握?qǐng)A的標(biāo)準(zhǔn)方程及其應(yīng)用的重要性。

-教師布置課后作業(yè),讓學(xué)生鞏固所學(xué)知識(shí)。教學(xué)資源拓展1.拓展資源:

-圓的對(duì)稱性:介紹圓的對(duì)稱性以及其在解析幾何中的應(yīng)用,包括軸對(duì)稱和中心對(duì)稱的概念,以及它們?cè)趫A的方程中的體現(xiàn)。

-圓的參數(shù)方程:探討圓的參數(shù)方程,展示如何通過參數(shù)θ來描述圓上的點(diǎn),以及參數(shù)方程在圓的幾何性質(zhì)研究中的應(yīng)用。

-圓與直線的位置關(guān)系:擴(kuò)展圓與直線相交、相切和相離的情況,分析不同情況下圓的方程和直線的方程之間的關(guān)系,以及如何通過方程求解交點(diǎn)坐標(biāo)。

-圓的極坐標(biāo)方程:介紹圓的極坐標(biāo)方程,展示如何將圓的幾何特性轉(zhuǎn)化為極坐標(biāo)下的表達(dá)式,以及極坐標(biāo)方程在特定情況下的優(yōu)勢(shì)。

2.拓展建議:

-學(xué)生可以閱讀關(guān)于解析幾何的課外書籍,如《解析幾何學(xué)》等,以加深對(duì)圓及其方程的理解。

-鼓勵(lì)學(xué)生通過在線教育平臺(tái)查找相關(guān)的視頻教程,如KhanAcademy的解析幾何課程,以獲得更直觀的學(xué)習(xí)體驗(yàn)。

-建議學(xué)生嘗試解決一些涉及圓的方程的實(shí)際問題,如建筑設(shè)計(jì)、城市規(guī)劃等領(lǐng)域的問題,以增強(qiáng)數(shù)學(xué)應(yīng)用能力。

-組織學(xué)生進(jìn)行小組合作,共同完成一些拓展練習(xí),如繪制不同圓的圖形,分析它們的幾何特性,并撰寫報(bào)告。

-推薦學(xué)生參加數(shù)學(xué)競賽或挑戰(zhàn),如美國數(shù)學(xué)競賽(AMC)或加拿大數(shù)學(xué)競賽(CMC),以提升解題技巧和邏輯思維能力。

-建議學(xué)生利用數(shù)學(xué)軟件,如MATLAB或GeoGebra,來繪制圓的圖形,觀察不同參數(shù)對(duì)圓形狀的影響,從而更深入地理解圓的方程。

-鼓勵(lì)學(xué)生參與數(shù)學(xué)俱樂部或社團(tuán),與其他對(duì)數(shù)學(xué)感興趣的同學(xué)交流學(xué)習(xí)心得,共同進(jìn)步。

-推薦學(xué)生閱讀一些關(guān)于數(shù)學(xué)史的書籍,了解圓及其方程在數(shù)學(xué)發(fā)展史上的重要地位,激發(fā)學(xué)生的學(xué)習(xí)興趣和探索精神。反思改進(jìn)措施反思改進(jìn)措施(一)教學(xué)特色創(chuàng)新

1.多媒體輔助教學(xué):在本節(jié)課中,我嘗試使用了多媒體資源,如動(dòng)畫、圖表和視頻,來輔助講解圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程。這種創(chuàng)新的教學(xué)手段不僅增強(qiáng)了課堂的趣味性,也提高了學(xué)生的學(xué)習(xí)效率。

2.實(shí)踐操作結(jié)合:我安排了實(shí)踐活動(dòng),讓學(xué)生通過繪制圓的圖形、推導(dǎo)圓的方程和解決實(shí)際問題來加深對(duì)圓的標(biāo)準(zhǔn)方程的理解。這種結(jié)合實(shí)踐操作的教學(xué)方法有助于學(xué)生將理論知識(shí)應(yīng)用于實(shí)際情境。

反思改進(jìn)措施(二)存在主要問題

1.學(xué)生參與度不足:在小組討論環(huán)節(jié),我發(fā)現(xiàn)部分學(xué)生參與度不高,有的學(xué)生只是旁觀者,沒有積極參與討論和解決問題。這可能是因?yàn)樗麄儗?duì)解析幾何的興趣不足或者對(duì)問題的理解不夠深入。

2.教學(xué)深度不夠:在講授圓的標(biāo)準(zhǔn)方程推導(dǎo)時(shí),我發(fā)現(xiàn)部分學(xué)生對(duì)推導(dǎo)過程的理解不夠深入,可能在后續(xù)的應(yīng)用中遇到困難。這可能是因?yàn)槲以谥v解時(shí)沒有充分考慮到學(xué)生的理解能力,導(dǎo)致教學(xué)深度不夠。

3.評(píng)價(jià)方式單一:本節(jié)課的評(píng)價(jià)主要依賴于課堂表現(xiàn)和作業(yè)完成情況,缺乏多元化的評(píng)價(jià)方式,如學(xué)生自評(píng)、互評(píng)等,這可能導(dǎo)致評(píng)價(jià)結(jié)果不夠全面。

反思改進(jìn)措施(三)

1.提高學(xué)生參與度:為了提高學(xué)生的參與度,我計(jì)劃在未來的教學(xué)中引入更多的互動(dòng)環(huán)節(jié),如小組競賽、角色扮演等,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性。

2.優(yōu)化教學(xué)深度:針對(duì)教學(xué)深度不夠的問題,我將調(diào)整教學(xué)內(nèi)容和進(jìn)度,確保學(xué)生在掌握基礎(chǔ)知識(shí)的同時(shí),能夠深入理解圓的標(biāo)準(zhǔn)方程的推導(dǎo)和應(yīng)用。

3.豐富評(píng)價(jià)方式:為了獲得更全面的學(xué)生評(píng)價(jià),我將嘗試引入多元化的評(píng)價(jià)方式,如學(xué)生自評(píng)、互評(píng)、課堂表現(xiàn)評(píng)價(jià)等,以便更準(zhǔn)確地了解學(xué)生的學(xué)習(xí)情況。

4.加強(qiáng)個(gè)別輔導(dǎo):對(duì)于理解能力較弱的學(xué)生,我將提供個(gè)別輔導(dǎo),幫助他們克服學(xué)習(xí)中的困難,確保每個(gè)學(xué)生都能跟上教學(xué)進(jìn)度。

5.反饋與改進(jìn):在教學(xué)結(jié)束后,我將收集學(xué)生的反饋意見,并根據(jù)反饋結(jié)果對(duì)教學(xué)方法和內(nèi)容進(jìn)行調(diào)整,以不斷改進(jìn)教學(xué)效果。典型例題講解例題1:已知圓的方程為(x-3)2+(y+2)2=16,求圓心坐標(biāo)和半徑。

解答:圓的標(biāo)準(zhǔn)方程為(x-h)2+(y-k)2=r2,其中(h,k)為圓心坐標(biāo),r為半徑。根據(jù)題目給出的圓的方程,可以直接讀出圓心坐標(biāo)為(3,-2),半徑r=4。

例題2:在直角坐標(biāo)系中,點(diǎn)A(2,3)在圓(x-1)2+(y-2)2=25上,求點(diǎn)A到圓心的距離。

解答:首先,根據(jù)圓的方程可以直接得到圓心坐標(biāo)為(1,2)。然后,利用兩點(diǎn)間的距離公式計(jì)算點(diǎn)A到圓心的距離:

\[d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\]

\[d=\sqrt{(1-2)^2+(2-3)^2}\]

\[d=\sqrt{1+1}\]

\[d=\sqrt{2}\]

例題3:求過點(diǎn)P(4,5)且與圓(x-2)2+(y+1)2=9相切的直線的方程。

解答:由于點(diǎn)P在圓外,我們可以設(shè)切線的斜率為k,那么切線的方程可以表示為:

\[y-5=k(x-4)\]

\[y=kx-4k+5\]

\[kx-y-4k+5=0\]

根據(jù)圓與直線相切的條件,圓心到直線的距離等于圓的半徑,即:

\[\frac{|k\cdot2-1\cdot(-1)-4k+5|}{\sqrt{k^2+1}}=3\]

\[\frac{|2k+1-4k+5|}{\sqrt{k^2+1}}=3\]

\[\frac{|6-2k|}{\sqrt{k^2+1}}=3\]

平方兩邊,解得k的兩個(gè)可能值,進(jìn)而得到兩條切線方程。

例題4:設(shè)圓的方程為(x-a)2+(y-b)2=r2,其中圓心坐標(biāo)為(a,b),半徑為r。若圓經(jīng)過原點(diǎn),求圓的標(biāo)準(zhǔn)方程。

解答:由于圓經(jīng)過原點(diǎn)(0,0),將原點(diǎn)坐標(biāo)代入圓的方程中,得到:

\[a^2+b^2=r^2\]

由于沒有其他信息,無法直接求出a、b和r的具體值,但可以寫出圓的標(biāo)準(zhǔn)方程。

例題5:已知圓的方程為x2+y2=25,求圓上的點(diǎn)P到圓心O的距離為5的點(diǎn)的坐標(biāo)。

解答:圓心O的坐標(biāo)為(0,0),半徑為5。設(shè)點(diǎn)P的坐標(biāo)為(x,y),根據(jù)點(diǎn)到圓心的距離公式,有:

\[x^2+y^2=5^2\]

\[x^2+y^2=25\]

由于點(diǎn)P到圓心的距離為5,所以有:

\[x^2+y^2=5^2\]

結(jié)合以上兩個(gè)方程,可以解得點(diǎn)P的坐標(biāo)為(0,±5)和(±5,0)。教學(xué)評(píng)價(jià)1.課堂評(píng)價(jià):

-提問:通過課堂提問,檢查學(xué)生對(duì)圓的標(biāo)準(zhǔn)方程的理解程度。例如,詢問學(xué)生圓心坐標(biāo)和半徑如何從方程中直接讀出,以及如何推導(dǎo)圓的標(biāo)準(zhǔn)方程。

-觀察:觀察學(xué)生在課堂上的參與度,包括是否積極回答問題、是否能正確地完成課堂練習(xí)等。

-測(cè)試:進(jìn)行小測(cè)驗(yàn)或課堂練習(xí),評(píng)估學(xué)生對(duì)圓的標(biāo)準(zhǔn)方程及其應(yīng)用的理解和掌握程度。測(cè)試可以包括選擇題、填空題和簡答題,題目設(shè)計(jì)應(yīng)涵蓋不同難度層次,以適應(yīng)不同學(xué)生的學(xué)習(xí)水平。

為了確保評(píng)價(jià)的有效性,以下是一些具體的評(píng)價(jià)方法:

-設(shè)計(jì)開放性問題,鼓勵(lì)學(xué)生表達(dá)自己的思考過程。

-通過小組討論,觀察學(xué)生的合作能力和交流技巧。

-在實(shí)際操作中,如繪制圓的圖形,觀察學(xué)生的操作熟練度和準(zhǔn)確性。

2.作業(yè)評(píng)價(jià):

-認(rèn)真批改學(xué)生的作業(yè),包括圓的標(biāo)準(zhǔn)方程的推導(dǎo)練習(xí)、應(yīng)用題和拓展練習(xí)。

-對(duì)學(xué)生的作業(yè)進(jìn)行詳細(xì)點(diǎn)評(píng),指出錯(cuò)誤的原因,并提供正確的解答或解題思路。

-及時(shí)反饋學(xué)生的學(xué)習(xí)效果,對(duì)于作業(yè)中表現(xiàn)好的部分給予肯定,對(duì)于存在的問題給予具體的指導(dǎo)和建議。

以下是作業(yè)評(píng)價(jià)的一些具體措施:

-對(duì)于作業(yè)中的錯(cuò)誤,提供詳細(xì)的改正說明,幫助學(xué)生理解錯(cuò)誤所在。

-對(duì)于完成作業(yè)速度較慢的學(xué)生,提供額外的輔導(dǎo),幫助他們提高解題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論