




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆貴州省遵義第四中學全國卷Ⅲ數學試題高考模擬題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知公差不為0的等差數列的前項的和為,,且成等比數列,則()A.56 B.72 C.88 D.402.已知函數,且),則“在上是單調函數”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件3.已知定義在上的奇函數和偶函數滿足(且),若,則函數的單調遞增區間為()A. B. C. D.4.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數,則()A., B.,C., D.,5.已知數列的前n項和為,,且對于任意,滿足,則()A. B. C. D.6.某三棱錐的三視圖如圖所示,網格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.7.是正四面體的面內一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則()A. B. C. D.8.港珠澳大橋于2018年10月2刻日正式通車,它是中國境內一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現對大橋某路段上1000輛汽車的行駛速度進行抽樣調查.畫出頻率分布直方圖(如圖),根據直方圖估計在此路段上汽車行駛速度在區間[85,90)的車輛數和行駛速度超過90km/h的頻率分別為()A.300, B.300, C.60, D.60,9.已知函數,若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數的取值范圍為()A. B. C. D.10.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發現落在正方形花紋上的米共有51粒,據此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.14711.函數的值域為()A. B. C. D.12.已知為實數集,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術》是中國古代的數學名著,其中《方田》一章給出了弧田面積的計算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.14.如圖,直線是曲線在處的切線,則________.15.一次考試后,某班全班50個人數學成績的平均分為正數,若把當成一個同學的分數,與原來的50個分數一起,算出這51個分數的平均值為,則_________.16.已知拋物線的焦點為,過點且斜率為1的直線交拋物線于兩點,,若線段的垂直平分線與軸交點的橫坐標為,則的值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)討論的單調性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數的最大值.18.(12分)如圖,在四棱錐中,底面是菱形,∠,是邊長為2的正三角形,,為線段的中點.(1)求證:平面平面;(2)若為線段上一點,當二面角的余弦值為時,求三棱錐的體積.19.(12分)某省新課改后某校為預測2020屆高三畢業班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數和其中本科上線人數,并將抽取數據制成下面的條形統計圖.(1)根據條形統計圖,估計本屆高三學生本科上線率.(2)已知該省甲市2020屆高考考生人數為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);(ii)已知該省乙市2020屆高考考生人數為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數據:取,.20.(12分)已知橢圓的右焦點為,過點且斜率為的直線與橢圓交于兩點,線段的中點為為坐標原點.(1)證明:點在軸的右側;(2)設線段的垂直平分線與軸、軸分別相交于點.若與的面積相等,求直線的斜率21.(12分)已知函數,,使得對任意兩個不等的正實數,都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.22.(10分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當時,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
,將代入,求得公差d,再利用等差數列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數列的前n項和公式,考查等差數列基本量的計算,是一道容易題.2、C【解析】
先求出復合函數在上是單調函數的充要條件,再看其和的包含關系,利用集合間包含關系與充要條件之間的關系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調遞減,單調遞增,在上是單調函數,其充要條件為即.故選:C.【點睛】本題考查了復合函數的單調性的判斷問題,充要條件的判斷,屬于基礎題.3、D【解析】
根據函數的奇偶性用方程法求出的解析式,進而求出,再根據復合函數的單調性,即可求出結論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調遞增,所以函數的單調遞增區間為.故選:D.【點睛】本題考查求函數的解析式、函數的性質,要熟記復合函數單調性判斷方法,屬于中檔題.4、C【解析】
根據古典概型概率計算公式,計算出概率并求得數學期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數學期望的計算,屬于中檔題.5、D【解析】
利用數列的遞推關系式判斷求解數列的通項公式,然后求解數列的和,判斷選項的正誤即可.【詳解】當時,.所以數列從第2項起為等差數列,,所以,,.,,.故選:.【點睛】本題考查數列的遞推關系式的應用、數列求和以及數列的通項公式的求法,考查轉化思想以及計算能力,是中檔題.6、C【解析】
作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結合三視圖作出三棱錐的實物圖,并分析三棱錐的結構,選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.7、B【解析】
設正四面體的棱長為,建立空間直角坐標系,求出各點的坐標,求出面的法向量,設的坐標,求出向量,求出線面所成角的正弦值,再由角的范圍,結合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標的關系,進而求出正切值.【詳解】由題意設四面體的棱長為,設為的中點,以為坐標原點,以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標系,則可得,,取的三等分點、如圖,則,,,,所以、、、、,由題意設,,和都是等邊三角形,為的中點,,,,平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,,可得,此時,則,.故選:B.【點睛】考查線面所成的角的求法,及正切值為定值時的情況,屬于中等題.8、B【解析】
由頻率分布直方圖求出在此路段上汽車行駛速度在區間的頻率即可得到車輛數,同時利用頻率分布直方圖能求行駛速度超過的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區間的頻率為,∴在此路段上汽車行駛速度在區間的車輛數為:,行駛速度超過的頻率為:.故選:B.【點睛】本題考查頻數、頻率的求法,考查頻率分布直方圖的性質等基礎知識,考查運算求解能力,是基礎題.9、D【解析】
根據中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.10、B【解析】
結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎題11、A【解析】
由計算出的取值范圍,利用正弦函數的基本性質可求得函數的值域.【詳解】,,,因此,函數的值域為.故選:A.【點睛】本題考查正弦型函數在區間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.12、C【解析】
求出集合,,,由此能求出.【詳解】為實數集,,,或,.故選:.【點睛】本題考查交集、補集的求法,考查交集、補集的性質等基礎知識,考查運算求解能力,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、612π﹣9【解析】
過作,交于,先求得圓心角的弧度數,然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據圓的幾何性質可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點睛】本小題主要考查弓形弦長和弓形面積的計算,考查中國古代數學文化,屬于中檔題.14、.【解析】
求出切線的斜率,即可求出結論.【詳解】由圖可知直線過點,可求出直線的斜率,由導數的幾何意義可知,.故答案為:.【點睛】本題考查導數與曲線的切線的幾何意義,屬于基礎題.15、1【解析】
根據均值的定義計算.【詳解】由題意,∴.故答案為:1.【點睛】本題考查均值的概念,屬于基礎題.16、1【解析】
設,寫出直線方程代入拋物線方程后應用韋達定理求得,由拋物線定義得焦點弦長,求得,再寫出的垂直平分線方程,得,從而可得結論.【詳解】拋物線的焦點坐標為,直線的方程為,據得.設,則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.【點睛】本題考查拋物線的焦點弦問題,根據拋物線的定義表示出焦點弦長是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導求出,對分類討論,求出的解,即可得出結論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉化為,恒成立,設,,只需,根據的單調性,即可求解.【詳解】(1)當時,,即在上增;當時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當時,,在單調遞增,所以滿足題意;當時,,,,所以在上減,在上增,令,..在單調遞減,所以所以在上單調遞減,,綜上可知,整數的最大值為.【點睛】本題考查函數導數的綜合應用,涉及函數的單調性、導數的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.18、(1)見解析;(2).【解析】
(1)先證明,可證平面,再由可證平面,即得證;(2)以為坐標原點,建立如圖所示空間直角坐標系,設,求解面的法向量,面的法向量,利用二面角的余弦值為,可求解,轉化即得解.【詳解】(1)證明:因為是正三角形,為線段的中點,所以.因為是菱形,所以.因為,所以是正三角形,所以,所以平面.又,所以平面.因為平面,所以平面平面.(2)由(1)知平面,所以,.而,所以,.又,所以平面.以為坐標原點,建立如圖所示空間直角坐標系.則.于是,,.設面的一個法向量,由得令,則,即.設,易得,.設面的一個法向量,由得令,則,,即.依題意,即,令,則,即,即.所以.【點睛】本題考查了空間向量和立體幾何綜合,考查了面面垂直的判斷,二面角的向量求解,三棱錐的體積等知識點,考查了學生空間想象,邏輯推理,數學運算的能力,屬于中檔題.19、(1)60%;(2)(i)0.12(ii)【解析】
(1)利用上線人數除以總人數求解;(2)(i)利用二項分布求解;(ii)甲、乙兩市上線人數分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計本科上線率為.(2)(i)記“恰有8名學生達到本科線”為事件A,由圖可知,甲市每個考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數分別記為X,Y,依題意,可得,.因為2020屆高考本科上線人數乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.【點睛】本題考查二項分布的綜合應用,考查計算求解能力,注意二項分布與超幾何分布是易混淆的知識點.20、(1)證明見解析(2)【解析】
(1)設出直線的方程,與橢圓方程聯立,利用根與系數的關系求出點的橫坐標即可證出;(2)根據線段的垂直平分線求出點的坐標,即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線的斜率.【詳解】(1)由題意,得,直線()設,,聯立消去,得,顯然,,則點的橫坐標,因為,所以點在軸的右側.(2)由(1)得點的縱坐標.即.所以線段的垂直平分線方程為:.令,得;令,得.所以的面積,的面積.因為與的面積相等,所以,解得.所以當與的面積相等時,直線的斜率.【點睛】本題主要考查直線與橢圓的位置關系的應用、根與系數的關系應用,以及三角形的面積的計算,意在考查學生的數學運算能力,屬于中檔題.21、(1);(2)證明見解析.【解析】
(1)根據題意,在上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國無線監護系統市場調查研究報告
- 對賭協議委托代理合同
- 小車陪駕服務合同協議
- 工廠設備銷售合同協議
- 山地合同轉讓協議書范本
- 工商協議入股合同模板
- 工件外發加工合同協議
- 崗位調動勞動合同變更協議模板
- 小吃點加盟合同協議
- 工地合作協議書合同模板
- 幼兒園繪本故事:《羅伯生氣了》 課件
- 高級財務管理完整版課件
- 怎樣學習初中物理
- DB62∕T 25-3111-2016 建筑基坑工程技術規程
- 大班音樂《水果百變秀》課件
- 婦幼保健院醫療保健服務轉介工作制度和流程
- 國家職業技能鑒定考評員考試題庫1100題【含答案】
- 監察機關執法工作規定學習測試
- 產品鑒定試驗大綱
- 2022職業病防治法宣傳周PPT
- 常州市武進區征地拆遷房屋裝修及附屬設施補償標準
評論
0/150
提交評論