河南省六市2025屆高三線上測試數學試題試卷_第1頁
河南省六市2025屆高三線上測試數學試題試卷_第2頁
河南省六市2025屆高三線上測試數學試題試卷_第3頁
河南省六市2025屆高三線上測試數學試題試卷_第4頁
河南省六市2025屆高三線上測試數學試題試卷_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省六市2025屆高三線上測試數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q2.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.3.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,24.已知函數f(x)=,若關于x的方程f(x)=kx-恰有4個不相等的實數根,則實數k的取值范圍是()A. B.C. D.5.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.6.關于圓周率π,數學發展史上出現過許多很有創意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數對;再統計兩數能與構成鈍角三角形三邊的數對的個數;最后再根據統計數估計的值,那么可以估計的值約為()A. B. C. D.7.已知集合A,B=,則A∩B=A. B. C. D.8.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發現三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路9.已知函數的定義域為,且,當時,.若,則函數在上的最大值為()A.4 B.6 C.3 D.810.已知等差數列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內角為,則的最大值為()A.5 B.11 C.20 D.2511.點在曲線上,過作軸垂線,設與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數為()A.0 B.1 C.2 D.312.已知向量,且,則等于()A.4 B.3 C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,則_________.14.若實數滿足不等式組,則的最小值是___15.已知是拋物線的焦點,是上一點,的延長線交軸于點.若為的中點,則_________.16.在《九章算術》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,內切球半徑為,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當x>0時,若函數g(x)(a>0)的最小值恒大于f(x),求實數a的取值范圍.18.(12分)在直角坐標系中,曲線的參數方程為(為參數,為實數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線與曲線交于,兩點,線段的中點為.(1)求線段長的最小值;(2)求點的軌跡方程.19.(12分)在平面直角坐標系中,已知直線的參數方程為(為參數),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.20.(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.21.(12分)已知函數.(1)求不等式的解集;(2)設的最小值為,正數,滿足,證明:.22.(10分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設是橢圓上且不在軸上的一個動點,為坐標原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C2、B【解析】

先判斷命題的真假,進而根據復合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.3、C【解析】

先求出集合U,再根據補集的定義求出結果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.4、D【解析】

由已知可將問題轉化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結合圖象即可得解.【詳解】若關于x的方程f(x)=kx-恰有4個不相等的實數根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當直線y=kx-和y=lnx相切時,設切點橫坐標為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..【點睛】本題主要考查了函數與方程思想及轉化能力,還考查了導數的幾何意義及計算能力、觀察能力,屬于難題.5、D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數取得最大值,最大值為3;當直線過點時,目標函數取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規劃.6、D【解析】

由試驗結果知對0~1之間的均勻隨機數,滿足,面積為1,再計算構成鈍角三角形三邊的數對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據題意知,名同學取對都小于的正實數對,即,對應區域為邊長為的正方形,其面積為,若兩個正實數能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.7、A【解析】

先解A、B集合,再取交集。【詳解】,所以B集合與A集合的交集為,故選A【點睛】一般地,把不等式組放在數軸中得出解集。8、D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內容進行分類討論,屬于基礎題型.9、A【解析】

根據所給函數解析式滿足的等量關系及指數冪運算,可得;利用定義可證明函數的單調性,由賦值法即可求得函數在上的最大值.【詳解】函數的定義域為,且,則;任取,且,則,故,令,,則,即,故函數在上單調遞增,故,令,,故,故函數在上的最大值為4.故選:A.【點睛】本題考查了指數冪的運算及化簡,利用定義證明抽象函數的單調性,賦值法在抽象函數求值中的應用,屬于中檔題.10、D【解析】

由公差d=-2可知數列單調遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數列的公差為-2,可知數列單調遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.11、C【解析】

設,則,則,即可得,設,利用導函數判斷的零點的個數,即為所求.【詳解】設,則,所以,依題意可得,設,則,當時,,則單調遞減;當時,,則單調遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數為2.故選:C【點睛】本題考查利用導函數處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.12、D【解析】

由已知結合向量垂直的坐標表示即可求解.【詳解】因為,且,,則.故選:.【點睛】本題主要考查了向量垂直的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先由題意得:,再利用向量數量積的幾何意義得,可得結果.【詳解】由知:,則在方向的投影為,由向量數量積的幾何意義得:,∴故答案為【點睛】本題考查了投影的應用,考查了數量積的幾何意義及向量的模的運算,屬于基礎題.14、-1【解析】作出可行域,如圖:由得,由圖可知當直線經過A點時目標函數取得最小值,A(1,0)所以-1故答案為-115、【解析】

由題意可得,又由于為的中點,且點在軸上,所以可得點的橫坐標,代入拋物線方程中可求點的縱坐標,從而可求出點的坐標,再利用兩點間的距離公式可求得結果.【詳解】解:因為是拋物線的焦點,所以,設點的坐標為,因為為的中點,而點的橫坐標為0,所以,所以,解得,所以點的坐標為所以,故答案為:【點睛】此題考查拋物線的性質,中點坐標公式,屬于基礎題.16、【解析】

該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內切球在側面內的正視圖是的內切圓,從而內切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,,,側棱底面,且底面為正方形,內切球在側面內的正視圖是的內切圓,內切球半徑為,故.故答案為.【點睛】本題考查了幾何體外接球和內切球的相關問題,補形法的運用,以及數學文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關鍵是能夠確定球心位置,以及選擇恰當的角度做出截面.球心位置的確定的方法有很多,主要有兩種:(1)補形法(構造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)。【解析】

(Ⅰ)分類討論,去掉絕對值,求得原絕對值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當時,原不等式可化為,此時不成立;當時,原不等式可化為,解得,即;當時,原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因為,當且僅當時等號成立,所以.當時,,所以.所以,解得,故實數的取值范圍為.【點睛】本題主要考查了絕對值不等式的解法,以及轉化與化歸思想,難度一般;常見的絕對值不等式的解法,法一:利用絕對值不等式的幾何意義求解,體現了數形結合的思想;法二:利用“零點分段法”求解,體現了分類討論的思想;法三:通過構造函數,利用函數的圖象求解,體現了函數與方程的思想.18、(1)(2)【解析】

(1)將曲線的方程化成直角坐標方程為,當時,線段取得最小值,利用幾何法求弦長即可.(2)當點與點不重合時,設,由利用向量的數量積等于可求解,最后驗證當點與點重合時也滿足.【詳解】解曲線的方程化成直角坐標方程為即圓心,半徑,曲線為過定點的直線,易知在圓內,當時,線段長最小為當點與點不重合時,設,化簡得當點與點重合時,也滿足上式,故點的軌跡方程為【點睛】本題考查了極坐標與普通方程的互化、直線與圓的位置關系、列方程求動點的軌跡方程,屬于基礎題.19、(1);(2)【解析】

(1)直接利用轉換公式,把參數方程,直角坐標方程與極坐標方程進行轉化;(2)利用極坐標方程將轉化為三角函數求解即可.【詳解】(1)因為,所以的普通方程為,又,,,的極坐標方程為,的方程即為,對應極坐標方程為.(2)由己知設,,則,,所以,又,,當,即時,取得最小值;當,即時,取得最大值.所以,的取值范圍為.【點睛】本題主要考查了直角坐標方程,參數方程與極坐標方程的互化,三角函數的值域求解等知識,考查了學生的運算求解能力.20、(1)12(2)【解析】

(1)根據焦距得焦點坐標,結合橢圓上的點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論