




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省滁州市九校聯考2025屆高三下學期第一次半月考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是偶函數,當時,函數單調遞減,設,,,則的大小關系為()A. B. C. D.2.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數記為.則()A. B.C. D.3.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內到兩定點距離之比為常數的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.4.已知向量,,當時,()A. B. C. D.5.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形6.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.7.已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:根據該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元8.在平面直角坐標系中,經過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.9.函數f(x)=的圖象大致為()A. B.C. D.10.若集合,,則()A. B. C. D.11.已知函數,其圖象關于直線對稱,為了得到函數的圖象,只需將函數的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變12.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.某高校開展安全教育活動,安排6名老師到4個班進行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.14.曲線在處的切線的斜率為________.15.已知滿足且目標函數的最大值為7,最小值為1,則___________.16.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)定義:若數列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數列”.(1)為“﹣數列”中的任意三項,則使得的取法有多少種?(2)為“﹣數列”中的任意三項,則存在多少正整數對使得且的概率為.18.(12分)已知數列的前項和為,.(1)求數列的通項公式;(2)若,為數列的前項和.求證:.19.(12分)2019年6月,國內的運營牌照開始發放.從到,我們國家的移動通信業務用了不到20年的時間,完成了技術上的飛躍,躋身世界先進水平.為了解高校學生對的消費意愿,2019年8月,從某地在校大學生中隨機抽取了1000人進行調查,樣本中各類用戶分布情況如下:用戶分類預計升級到的時段人數早期體驗用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學生升級時間的早晚與大學生愿意為套餐支付更多的費用作比較,可得出下圖的關系(例如早期體驗用戶中愿意為套餐多支付5元的人數占所有早期體驗用戶的).(1)從該地高校大學生中隨機抽取1人,估計該學生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數,求的分布列和數學期望;(3)2019年底,從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐,能否認為樣本中早期體驗用戶的人數有變化?說明理由.20.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數的取值范圍.21.(12分)某企業對設備進行升級改造,現從設備改造前后生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值,該項質量指標值落在區間內的產品視為合格品,否則視為不合格品,如圖是設備改造前樣本的頻率分布直方圖,下表是設備改造后樣本的頻數分布表.圖:設備改造前樣本的頻率分布直方圖表:設備改造后樣本的頻率分布表質量指標值頻數2184814162(1)求圖中實數的值;(2)企業將不合格品全部銷毀后,對合格品進行等級細分,質量指標值落在區間內的定為一等品,每件售價240元;質量指標值落在區間或內的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據表1的數據,用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.若有一名顧客隨機購買兩件產品支付的費用為(單位:元),求的分布列和數學期望.22.(10分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設P為橢圓上一點,且OM+ON=t
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據自變量的大小關系得到函數值的大小關系.【詳解】為偶函數圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:本題考查利用函數奇偶性、對稱性和單調性比較函數值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數的單調性,通過自變量的大小關系求得結果.2.A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數,對應的事件有哪些結果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數就會出現三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結果.3.A【解析】
根據平面內兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.本題主要考查軌跡的求法和圓的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.4.A【解析】
根據向量的坐標運算,求出,,即可求解.【詳解】,.故選:A.本題考查向量的坐標運算、誘導公式、二倍角公式、同角間的三角函數關系,屬于中檔題.5.B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B本題主要考查了對數的運算性質的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.6.D【解析】
根據題意畫出幾何關系,由四邊形的內切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據題意,畫出幾何關系如下圖所示:設四邊形的內切圓半徑為,雙曲線半焦距為,則所以,四邊形的內切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.7.D【解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.8.B【解析】
根據所求雙曲線的漸近線方程為,可設所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B本題主要考查用待定系數法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質的應用,屬于基礎題.9.D【解析】
根據函數為非偶函數可排除兩個選項,再根據特殊值可區分剩余兩個選項.【詳解】因為f(-x)=≠f(x)知f(x)的圖象不關于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.本題主要考查了函數圖象的對稱性及特值法區分函數圖象,屬于中檔題.10.B【解析】
根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.11.D【解析】
由函數的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數的圖象關于直線對稱,得,即,解得,所以,,故只需將函數的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D本題考查三角函數的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題12.B【解析】
分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當,不充分故是必要不充分條件,答案選B本題考查了充分必要條件,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13.156【解析】
先考慮每班安排的老師人數,然后計算出對應的方案數,再考慮劉老師和王老師在同一班級的方案數,兩者作差即可得到不同安排的方案數.【詳解】安排6名老師到4個班則每班老師人數為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.本題考查排列組合的綜合應用,難度一般.對于分組的問題,首先確定每組的數量,對于其中特殊元素,可通過“正難則反”的思想進行分析.14.【解析】
求出函數的導數,利用導數的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:本題考查了導數的幾何意義、導數的運算法則以及基本初等函數的導數,屬于基礎題.15.-2【解析】
先根據約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點即可.【詳解】由題意得:目標函數在點B取得最大值為7,在點A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.本題主要考查了簡單的線性規劃,以及利用幾何意義求最值的方法,屬于基礎題.16.【解析】
設,由橢圓和雙曲線的定義得到,根據是以為底邊的等腰三角形,得到,從而有,根據,得到,再利用導數法求的范圍.【詳解】設,由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:本題主要考查橢圓,雙曲線的定義和幾何性質,還考查了運算求解的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)16;(2)115.【解析】
(1)易得使得的情況只有“”,“”兩種,再根據組合的方法求解兩種情況分別的情況數再求和即可.(2)易得“”共有種,“”共有種.再根據古典概型的方法可知,利用組合數的計算公式可得,當時根據題意有,共個;當時求得,再根據換元根據整除的方法求解滿足的正整數對即可.【詳解】解:(1)三個數乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計數原理得:為“﹣數列”中的任意三項,則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數列”中任取三項共有種,根據古典概型有:,再根據組合數的計算公式能得到:,時,應滿足,,共個,時,應滿足,視為常數,可解得,,根據可知,,,,根據可知,,(否則),下設,則由于為正整數知必為正整數,,,化簡上式關系式可以知道:,均為偶數,設,則,由于中必存在偶數,只需中存在數為的倍數即可,,.檢驗:符合題意,共有個,綜上所述:共有個數對符合題意.本題主要考查了排列組合的基本方法,同時也考查了組合數的運算以及整數的分析方法等,需要根據題意18.(1)(2)證明見解析【解析】
(1)利用求得數列的通項公式.(2)先將縮小即,由此結合裂項求和法、放縮法,證得不等式成立.【詳解】(1)∵,令,得.又,兩式相減,得.∴.(2)∵.又∵,,∴.∴.∴.本小題主要考查已知求,考查利用放縮法證明不等式,考查化歸與轉化的數學思想方法,屬于中檔題.19.(1)(2)詳見解析(3)事件雖然發生概率小,但是發生可能性為0.02,所以認為早期體驗用戶沒有發生變化,詳見解析【解析】
(1)由從高校大學生中隨機抽取1人,該學生在2021年或2021年之前升級到,結合古典摡型的概率計算公式,即可求解;(2)由題意的所有可能值為,利用相互獨立事件的概率計算公式,分別求得相應的概率,得到隨機變量的分布列,利用期望的公式,即可求解.(3)設事件為“從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐”,得到七概率為,即可得到結論.【詳解】(1)由題意可知,從高校大學生中隨機抽取1人,該學生在2021年或2021年之前升級到的概率估計為樣本中早期體驗用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗用戶中隨機抽取1人,該學生愿意為升級多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機抽取1人,該學生愿意為升級多支付10元或10元以上”,由題意可知,事件,相互獨立,且,,所以,,,所以的分布列為0120.180.490.33故的數學期望.(3)設事件為“從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐”,那么.回答一:事件雖然發生概率小,但是發生可能性為0.02,所以認為早期體驗用戶沒有發生變化.回答二:事件發生概率小,所以可以認為早期體驗用戶人數增加.本題主要考查了離散型隨機變量的分布列,數學期望的求解及應用,對于求離散型隨機變量概率分布列問題首先要清楚離散型隨機變量的可能取值,計算得出概率,列出離散型隨機變量概率分布列,最后按照數學期望公式計算出數學期望,其中列出離散型隨機變量概率分布列及計算數學期望是理科高考數學必考問題.20.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用零點分段討論法把函數改寫成分段函數的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當時等號成立),依題意,,,有,則,解之得,故實數的取值范圍是.本題考查由存在性問題求參數的范圍、零點分段討論法解絕對值不等式、利用絕對值三角不等式和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 砂石篩分協議書
- 羊圈用地協議書
- 艾滋保密協議書
- 合同法有關認購協議書
- 藥房保密協議書
- 營銷團隊協議書
- 職業操守協議書
- 比亞迪汽車競價協議書
- 用電服務協議書
- 退婚賠款協議書
- 2025年國際關系與外交專業考試試題及答案
- 2025年物流行業安全生產考試題庫(物流安全生產法規與事故處理)試題
- 初中語文同步課件 17.陋室銘
- 機械工程師資格證書考試真題與試題及答案
- 消防維保筆試題及答案
- 全球化背景下的跨境人力成本管控-洞察闡釋
- 第16課《學先鋒 做先鋒》(第二課時)教案教學設計 2025道德與法治一年級下冊
- 新冠基本培訓試題及答案
- 食管狹窄試題答案及解析
- 《商務演示技巧》課件
- 2024年山東高考化學試卷知識點分布
評論
0/150
提交評論