2025屆海南省海口四中高中畢業班質量檢測試題數學試題_第1頁
2025屆海南省海口四中高中畢業班質量檢測試題數學試題_第2頁
2025屆海南省海口四中高中畢業班質量檢測試題數學試題_第3頁
2025屆海南省海口四中高中畢業班質量檢測試題數學試題_第4頁
2025屆海南省海口四中高中畢業班質量檢測試題數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆海南省海口四中高中畢業班質量檢測試題數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.2.設,其中a,b是實數,則()A.1 B.2 C. D.3.函數在上的圖象大致為()A. B. C. D.4.已知是第二象限的角,,則()A. B. C. D.5.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為()A. B.C. D.6.如圖,圓的半徑為,,是圓上的定點,,是圓上的動點,點關于直線的對稱點為,角的始邊為射線,終邊為射線,將表示為的函數,則在上的圖像大致為()A. B. C. D.7.費馬素數是法國大數學家費馬命名的,形如的素數(如:)為費馬索數,在不超過30的正偶數中隨機選取一數,則它能表示為兩個不同費馬素數的和的概率是()A. B. C. D.8.若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為()A. B.2 C. D.9.已知函數,以下結論正確的個數為()①當時,函數的圖象的對稱中心為;②當時,函數在上為單調遞減函數;③若函數在上不單調,則;④當時,在上的最大值為1.A.1 B.2 C.3 D.410.已知數列為等比數列,若,且,則()A. B.或 C. D.11.如果,那么下列不等式成立的是()A. B.C. D.12.已知i是虛數單位,則1+iiA.-12+32i二、填空題:本題共4小題,每小題5分,共20分。13.設實數,若函數的最大值為,則實數的最大值為______.14.已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為___________.15.已知,,且,則的最小值是______.16.已知雙曲線的右準線與漸近線的交點在拋物線上,則實數的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.18.(12分)在中,設、、分別為角、、的對邊,記的面積為,且.(1)求角的大小;(2)若,,求的值.19.(12分)已知的圖象在處的切線方程為.(1)求常數的值;(2)若方程在區間上有兩個不同的實根,求實數的值.20.(12分)已知函數.(1)解關于的不等式;(2)若函數的圖象恒在直線的上方,求實數的取值范圍21.(12分)已知函數的導函數的兩個零點為和.(1)求的單調區間;(2)若的極小值為,求在區間上的最大值.22.(10分)在直角坐標系xOy中,直線的參數方程為(t為參數,).以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為.(l)求直線的普通方程和曲線C的直角坐標方程:(2)若直線與曲線C相交于A,B兩點,且.求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.2、D【解析】

根據復數相等,可得,然后根據復數模的計算,可得結果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數模的計算,考驗計算,屬基礎題.3、C【解析】

根據函數的奇偶性及函數在時的符號,即可求解.【詳解】由可知函數為奇函數.所以函數圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【點睛】本題主要考查了函數的奇偶性的判定及奇偶函數圖像的對稱性,屬于中檔題.4、D【解析】

利用誘導公式和同角三角函數的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.5、A【解析】

根據平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數形結合的思想,屬于難題.6、B【解析】

根據圖象分析變化過程中在關鍵位置及部分區域,即可排除錯誤選項,得到函數圖象,即可求解.【詳解】由題意,當時,P與A重合,則與B重合,所以,故排除C,D選項;當時,,由圖象可知選B.故選:B【點睛】本題主要考查三角函數的圖像與性質,正確表示函數的表達式是解題的關鍵,屬于中檔題.7、B【解析】

基本事件總數,能表示為兩個不同費馬素數的和只有,,,共有個,根據古典概型求出概率.【詳解】在不超過的正偶數中隨機選取一數,基本事件總數能表示為兩個不同費馬素數的和的只有,,,共有個則它能表示為兩個不同費馬素數的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎題.8、D【解析】

利用復數代數形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.9、C【解析】

逐一分析選項,①根據函數的對稱中心判斷;②利用導數判斷函數的單調性;③先求函數的導數,若滿足條件,則極值點必在區間;④利用導數求函數在給定區間的最值.【詳解】①為奇函數,其圖象的對稱中心為原點,根據平移知識,函數的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數在上為單調遞減函數,正確.③由題意知,當時,,此時在上為增函數,不合題意,故.令,解得.因為在上不單調,所以在上有解,需,解得,正確.④令,得.根據函數的單調性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【點睛】本題考查利用導數研究函數的單調性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.10、A【解析】

根據等比數列的性質可得,通分化簡即可.【詳解】由題意,數列為等比數列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數列的性質,考查了推理能力與運算能力,屬于基礎題.11、D【解析】

利用函數的單調性、不等式的基本性質即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數的單調性比較大小,考查不等式的性質,屬于基礎題.12、D【解析】

利用復數的運算法則即可化簡得出結果【詳解】1+i故選D【點睛】本題考查了復數代數形式的乘除運算,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.14、【解析】

設直線l的方程為,,聯立直線l與拋物線C的方程,得到A,B點橫坐標的關系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設直線.由題設得,故,由題設可得.

由可得,

則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質,直線與拋物線的位置關系,屬于中檔題.15、8【解析】

由整體代入法利用基本不等式即可求得最小值.【詳解】,當且僅當時等號成立.故的最小值為8,故答案為:8.【點睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎題.16、【解析】

求出雙曲線的漸近線方程,右準線方程,得到交點坐標代入拋物線方程求解即可.【詳解】解:雙曲線的右準線,漸近線,雙曲線的右準線與漸近線的交點,交點在拋物線上,可得:,解得.故答案為.【點睛】本題考查雙曲線的簡單性質以及拋物線的簡單性質的應用,是基本知識的考查,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)不存在;詳見解析【解析】

(1)設,,,通過,即為的中點,轉化求解,點的軌跡的方程.(2)設直線的方程為,先根據,可得,①,再根據韋達定理,點在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設,,則,,由題意知,所以為中點,由中點坐標公式得,即,又點在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設直線的方程為,因為,故,即①,聯立,消去得:,設,,,,,因為四邊形為平行四邊形,故,點在橢圓上,故,整理得②,將①代入②,得,該方程無解,故這樣的直線不存在.【點睛】本題考查點的軌跡方程的求法、滿足條件的點是否存在的判斷與直線方程的求法,考查數學轉化思想方法,是中檔題.18、(1);(2)【解析】

(1)由三角形面積公式,平面向量數量積的運算可得,結合范圍,可求,進而可求的值.(2)利用同角三角函數基本關系式可求,利用兩角和的正弦函數公式可求的值,由正弦定理可求得的值.【詳解】解:(1)由,得,因為,所以,可得:.(2)中,,所以.所以:,由正弦定理,得,解得,【點睛】本題主要考查了三角形面積公式,平面向量數量積的運算,同角三角函數基本關系式,兩角和的正弦函數公式,正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.19、(1);(2)或.【解析】

(1)求出,由,建立方程求解,即可求出結論;(2)根據函數的單調區間,極值,做出函數在的圖象,即可求解.【詳解】(1),由題意知,解得(舍去)或.(2)當時,故方程有根,根為或,+0-0+極大值極小值由表可見,當時,有極小值0.由上表可知的減函數區間為,遞增區間為,.因為,.由數形結合可得或.【點睛】本題考查導數的幾何意義,應用函數的圖象是解題的關鍵,意在考查直觀想象、邏輯推理和數學計算能力,屬于中檔題.20、(1)(2)【解析】

(1)零點分段法分,,三種情況討論即可;(2)只需找到的最小值即可.【詳解】(1)由.若時,,解得;若時,,解得;若時,,解得;故不等式的解集為.(2)由,有,得,故實數的取值范圍為.【點睛】本題考查絕對值不等式的解法以及不等式恒成立問題,考查學生的運算能力,是一道基礎題.21、(1)單調遞增區間是,單調遞減區間是和;(2)最大值是.【解析】

(1)求得,由題意可知和是函數的兩個零點,根據函數的符號變化可得出的符號變化,進而可得出函數的單調遞增區間和遞減區間;(2)由(1)中的結論知,函數的極小值為,進而得出,解出、、的值,然后利用導數可求得函數在區間上的最大值.【詳解】(1),令,因為,所以的零點就是的零點,且與符號相同.又因為,所以當時,,即;當或時,,即.所以,函數的單調遞增區間是,單調遞減區間是和;(2)由(1)知,是的極小值點,所以有,解得,,,所以.因為函數的單調遞增區間是,單調遞減區間是和.所以為函數的極大值,故在區間上的最大值取和中的最大者,而,所以函數在區間上的最大值是.【點睛】本題考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論