廣東省茂名市五校聯(lián)考2025年下學期高三數(shù)學試題(理工類)一模考試試卷_第1頁
廣東省茂名市五校聯(lián)考2025年下學期高三數(shù)學試題(理工類)一模考試試卷_第2頁
廣東省茂名市五校聯(lián)考2025年下學期高三數(shù)學試題(理工類)一模考試試卷_第3頁
廣東省茂名市五校聯(lián)考2025年下學期高三數(shù)學試題(理工類)一模考試試卷_第4頁
廣東省茂名市五校聯(lián)考2025年下學期高三數(shù)學試題(理工類)一模考試試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省茂名市五校聯(lián)考2025年下學期高三數(shù)學試題(理工類)一模考試試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.4002.根據(jù)黨中央關(guān)于“精準”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟部門派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.3.在平行四邊形中,若則()A. B. C. D.4.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.6.已知函數(shù),則方程的實數(shù)根的個數(shù)是()A. B. C. D.7.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.88.函數(shù)在上的大致圖象是()A. B.C. D.9.函數(shù)的圖像大致為()A. B.C. D.10.在中,,,,則邊上的高為()A. B.2 C. D.11.如圖是一個算法流程圖,則輸出的結(jié)果是()A. B. C. D.12.在展開式中的常數(shù)項為A.1 B.2 C.3 D.7二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知為實數(shù),向量,,且,則____________.14.某高校組織學生辯論賽,六位評委為選手成績打出分數(shù)的莖葉圖如圖所示,若去掉一個最高分,去掉一個最低分,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為______.15.在一塊土地上種植某種農(nóng)作物,連續(xù)5年的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是______噸.16.從一箱產(chǎn)品中隨機地抽取一件,設(shè)事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.(1)證明:面面;(2)當為中點時,求二面角余弦值.18.(12分)在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.19.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.20.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線極坐標方程為.若直線交曲線于,兩點,求線段的長.21.(12分)已知函數(shù),當時,有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.22.(10分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)g(x)=f(x)1,若函數(shù)g(x)在上有兩個零點,求實數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

設(shè)公差為,由已知可得,進而求出的通項公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.【點睛】本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎(chǔ)題.2.A【解析】

每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.3.C【解析】

由,,利用平面向量的數(shù)量積運算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,

平行四邊形中,,

,,,

因為,

所以

,

,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數(shù)量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).4.C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).5.B【解析】

運行程序,依次進行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當時,再次循環(huán)輸出的,,此時,循環(huán)結(jié)束,輸出,故選:B【點睛】本題主要考查程序框圖的相關(guān)知識,經(jīng)過幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.6.D【解析】

畫出函數(shù),將方程看作交點個數(shù),運用圖象判斷根的個數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個,2個解,故方程的實數(shù)根的個數(shù)是3+2=5個故選:D【點睛】本題綜合考查了函數(shù)的圖象的運用,分類思想的運用,數(shù)學結(jié)合的思想判斷方程的根,難度較大,屬于中檔題.7.B【解析】

求出,,,,,,判斷出是一個以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數(shù)列,則.故選:B.【點睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.8.D【解析】

討論的取值范圍,然后對函數(shù)進行求導,利用導數(shù)的幾何意義即可判斷.【詳解】當時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數(shù)在上單調(diào)遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導數(shù)與函數(shù)單調(diào)性的關(guān)系以及導數(shù)的幾何意義,屬于中檔題.9.A【解析】

根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.10.C【解析】

結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.11.A【解析】

執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結(jié)果,故選A.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.12.D【解析】

求出展開項中的常數(shù)項及含的項,問題得解。【詳解】展開項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉(zhuǎn)化思想,考查計算能力,屬于基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13.5【解析】

由,,且,得,解得,則,則.14.【解析】

先根據(jù)莖葉圖求出平均數(shù)和中位數(shù),然后可得結(jié)果.【詳解】剩下的四個數(shù)為83,85,87,95,且這四個數(shù)的平均數(shù),這四個數(shù)的中位數(shù)為,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為.【點睛】本題主要考查莖葉圖的識別和統(tǒng)計量的計算,側(cè)重考查數(shù)據(jù)分析和數(shù)學運算的核心素養(yǎng).15.10【解析】

根據(jù)已知數(shù)據(jù)直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數(shù),是基礎(chǔ)題.16.0.35【解析】

根據(jù)對立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點睛】本題考查了求互斥事件與對立事件的概率的應(yīng)用問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】

(1)要證明面面,只需證明面即可;(2)以為坐標原點,以,,分別為,,軸建系,分別計算出面法向量,面的法向量,再利用公式計算即可.【詳解】證明:(1)因為底面為正方形,所以又因為,,滿足,所以又,面,面,,所以面.又因為面,所以,面面.(2)由(1)知,,兩兩垂直,以為坐標原點,以,,分別為,,軸建系如圖所示,則,,,,則,.所以,,,,設(shè)面法向量為,則由得,令得,,即;同理,設(shè)面的法向量為,則由得,令得,,即,所以,設(shè)二面角的大小為,則所以二面角余弦值為.【點睛】本題考查面面垂直的證明以及利用向量法求二面角,考查學生的運算求解能力,此類問題關(guān)鍵是準確寫出點的坐標,是一道中檔題.18.(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)4【解析】

(1)將直線l參數(shù)方程中的消去,即可得直線l的普通方程,對曲線C的極坐標方程兩邊同時乘以,利用可得曲線C的直角坐標方程;(2)求出點到直線的距離,再求出的弦長,從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.因為ρ=4sin所以ρ=2sinθ+2cosθ,兩邊同時乘以得,ρ2=2ρsinθ+2ρcosθ,因為,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)∵原點O到直線l的距離直線l過圓C的圓心(,1),∴|MN|=2r=4,所以△MON的面積S=|MN|×d=4.【點睛】本題考查了直線與圓的極坐標方程與普通方程、參數(shù)方程與普通方程的互化知識,解題的關(guān)鍵是正確使用這一轉(zhuǎn)化公式,還考查了直線與圓的位置關(guān)系等知識.19.(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因為,所以,由正弦定理,得.又因為,,所以.又因為,所以.(II)由,得,由余弦定理,得,即,因為,解得.因為,所以.20.【解析】

由,化簡得,由,所以直線的直角坐標方程為,因為曲線的參數(shù)方程為,整理得,直線的方程與曲線的方程聯(lián)立,,整理得,設(shè),則,根據(jù)弦長公式求解即可.【詳解】由,化簡得,又因為,所以直線的直角坐標方程為,因為曲線的參數(shù)方程為,消去,整理得,將直線的方程與曲線的方程聯(lián)立,,消去,整理得,設(shè),則,所以,將,代入上式,整理得.【點睛】本題考查參數(shù)方程,極坐標方程的應(yīng)用,結(jié)合弦長公式的運用,屬于中檔題.21.(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】

(1)由題意得到關(guān)于實數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當時,有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當時,函數(shù)取得極小值,極小值為.當時,有極大值3.【點睛】本題主要考查了函數(shù)的極值的概念,以及利用導數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導數(shù)與原函數(shù)的關(guān)系,準確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.22.(1)單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞)(2)(3,2e]【解析】

(1)當a=2時,求出,求解,即可得出結(jié)論;(2)函數(shù)在上有兩個零點等價于a=2x在上有兩解,構(gòu)造函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論