2025屆山東省郯城縣高三第一次模擬預測數學試題試卷_第1頁
2025屆山東省郯城縣高三第一次模擬預測數學試題試卷_第2頁
2025屆山東省郯城縣高三第一次模擬預測數學試題試卷_第3頁
2025屆山東省郯城縣高三第一次模擬預測數學試題試卷_第4頁
2025屆山東省郯城縣高三第一次模擬預測數學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省郯城縣高三第一次模擬預測數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.22.定義在上的奇函數滿足,若,,則()A. B.0 C.1 D.23.已知是偶函數,在上單調遞減,,則的解集是A. B.C. D.4.已知函數在區間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.5.設是等差數列,且公差不為零,其前項和為.則“,”是“為遞增數列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.雙曲線x2a2A.y=±2x B.y=±3x7.已知點P不在直線l、m上,則“過點P可以作無數個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.9.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.設函數恰有兩個極值點,則實數的取值范圍是()A. B.C. D.11.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.12.復數().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的常數項為______.14.的二項展開式中,含項的系數為__________.15.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數=____。16.若復數(是虛數單位),則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線,曲線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積18.(12分)在直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.19.(12分)的內角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.20.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.21.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.22.(10分)如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由圖像用分段函數表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數形結合,數學運算的能力,屬于中檔題.2、C【解析】

首先判斷出是周期為的周期函數,由此求得所求表達式的值.【詳解】由已知為奇函數,得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數的奇偶性和周期性,屬于基礎題.3、D【解析】

先由是偶函數,得到關于直線對稱;進而得出單調性,再分別討論和,即可求出結果.【詳解】因為是偶函數,所以關于直線對稱;因此,由得;又在上單調遞減,則在上單調遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數的性質解對應不等式,熟記函數的奇偶性、對稱性、單調性等性質即可,屬于常考題型.4、C【解析】

根據題意,知當時,,由對稱軸的性質可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區間有三個零點,,,當時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數的最小正周期,涉及函數的對稱性的應用,考查計算能力.5、A【解析】

根據等差數列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【詳解】是等差數列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數列為單調遞減數列,則必存在,使得當時,,則,不合乎題意;若,由且數列為單調遞增數列,則對任意的,,合乎題意.所以,“,”“為遞增數列”;必要性:設,當時,,此時,,但數列是遞增數列.所以,“,”“為遞增數列”.因此,“,”是“為遞增數列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合等差數列的前項和公式是解決本題的關鍵,屬于中等題.6、A【解析】分析:根據離心率得a,c關系,進而得a,b關系,再根據雙曲線方程求漸近線方程,得結果.詳解:∵e=因為漸近線方程為y=±bax點睛:已知雙曲線方程x2a27、C【解析】

根據直線和平面平行的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質是解決本題的關鍵.8、C【解析】

根據拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.9、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.10、C【解析】

恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導數判斷函數值域求出方程有一個不是1的解時t應滿足的條件.【詳解】由題意知函數的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數在上單調遞增,從而,且.所以,當且時,恰有兩個極值點,即實數的取值范圍是.故選:C【點睛】本題考查利用導數研究函數的單調性與極值,函數與方程的應用,屬于中檔題.11、D【解析】

根據底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關系,設球心為,即可由球的性質和勾股定理求得球的半徑,進而得球的表面積.【詳解】設為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質可知所以三棱錐為正三棱錐,設底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設為,如下圖所示:由球的性質可知,平面,且在同一直線上,設球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結構特征和相關計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.12、A【解析】試題分析:,故選A.【考點】復數運算【名師點睛】復數代數形式的四則運算的法則是進行復數運算的理論依據,加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數化.二、填空題:本題共4小題,每小題5分,共20分。13、160【解析】

先求的展開式中通項,令的指數為3即可求解結論.【詳解】解:因為的展開式的通項公式為:;令,可得;的展開式中的常數項為:.故答案為:160.【點睛】本題考查二項式系數的性質,關鍵是熟記二項展開式的通項,屬于基礎題.14、【解析】

寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.15、或1【解析】

利用導數的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導數為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或。【點睛】本題主要考查利用導數求切線方程,以及直線方程的運用,三角形的面積求法。16、【解析】

直接根據復數的代數形式四則運算法則計算即可.【詳解】,.【點睛】本題主要考查復數的代數形式四則運算法則的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)先把參數方程化成普通方程,再利用極坐標的公式把普通方程化成極坐標方程;(2)先利用極坐標求出弦長,再求高,最后求的面積.【詳解】(1)曲線的極坐標方程為:,因為曲線的普通方程為:,曲線的極坐標方程為;(2)由(1)得:點的極坐標為,點的極坐標為,,點到射線的距離為的面積為.【點睛】本題考查普通方程、參數方程與極坐標方程之間的互化,同時也考查了利用極坐標方程求解面積問題,考查計算能力,屬于中等題.18、(1),;(2)【解析】分析:(1)用代入法消參數可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;(2)把直線的參數方程代入曲線的直角坐標方程,其中參數的絕對值表示直線上對應點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關系,由此可求得的取值范圍.詳解:(1)直線的參數方程為,普通方程為,將代入圓的極坐標方程中,可得圓的普通方程為,(2)解:直線的參數方程為代入圓的方程為可得:(*),且由題意,,.因為方程(*)有兩個不同的實根,所以,即,又,所以.因為,所以所以.點睛:(1)參數方程化為普通方程,一般用消參數法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標方程與直角坐標方程互化一般利用公式;(3)過的直線的參數方程為(為參數)中參數具有幾何意義:直線上任一點對應參數,則.19、(1);(2)【解析】

試題分析:(1)根據余弦定理求出B,帶入條件求出,利用同角三角函數關系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據條件選擇正余弦定理,將問題轉化統一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.20、.【解析】

根據特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎題.21、(1)(2)或【解析】

(1)根據題意計算得到,,得到橢圓方程.(2)設,聯立方程得到,根據,計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設,由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【點睛】本題考查了橢圓方程,根據直線和橢圓的位置關系求直線,將題目轉化為是解題的關鍵.22、(1)見解析;(II).【解析】

試題分析:(1)取中點,連結,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能證明為直角三角形;(2)設,由,得,求出平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論