廣西南寧二中2025年高三聯考數學試題(聯考)試題_第1頁
廣西南寧二中2025年高三聯考數學試題(聯考)試題_第2頁
廣西南寧二中2025年高三聯考數學試題(聯考)試題_第3頁
廣西南寧二中2025年高三聯考數學試題(聯考)試題_第4頁
廣西南寧二中2025年高三聯考數學試題(聯考)試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西南寧二中2025年高三聯考數學試題(聯考)試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是定義是上的奇函數,滿足,當時,,則函數在區間上的零點個數是()A.3 B.5 C.7 D.92.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.3.△ABC的內角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或4.將函數圖象向右平移個單位長度后,得到函數的圖象關于直線對稱,則函數在上的值域是()A. B. C. D.5.若,滿足約束條件,則的取值范圍為()A. B. C. D.6.設為的兩個零點,且的最小值為1,則()A. B. C. D.7.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.8.設為虛數單位,復數,則實數的值是()A.1 B.-1 C.0 D.29.若復數滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.函數的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位11.已知函數,則下列結論中正確的是①函數的最小正周期為;②函數的圖象是軸對稱圖形;③函數的極大值為;④函數的最小值為.A.①③ B.②④C.②③ D.②③④12.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.春節期間新型冠狀病毒肺炎疫情在湖北爆發,為了打贏疫情防控阻擊戰,我省某醫院選派2名醫生,6名護士到湖北、兩地參加疫情防控工作,每地一名醫生,3名護士,其中甲乙兩名護士不到同一地,共有__________種選派方法.14.若實數x,y滿足約束條件,則的最大值為________.15.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.16.展開式中的系數的和大于8而小于32,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AEBD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結果,不要求過程).18.(12分)已知為坐標原點,單位圓與角終邊的交點為,過作平行于軸的直線,設與終邊所在直線的交點為,.(1)求函數的最小正周期;(2)求函數在區間上的值域.19.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.20.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,,四邊形ABCD內接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.21.(12分)在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數方程為(為參數),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標方程:(2)若成等比數列,求a的值。22.(10分)已知函數.(1)討論的單調性;(2)函數,若對于,使得成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據是定義是上的奇函數,滿足,可得函數的周期為3,再由奇函數的性質結合已知可得,利用周期性可得函數在區間上的零點個數.【詳解】∵是定義是上的奇函數,滿足,,可得,

函數的周期為3,

∵當時,,

令,則,解得或1,

又∵函數是定義域為的奇函數,

∴在區間上,有.

由,取,得,得,

∴.

又∵函數是周期為3的周期函數,

∴方程=0在區間上的解有共9個,

故選D.【點睛】本題考查根的存在性及根的個數判斷,考查抽象函數周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.2.A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數基礎題.3.D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.4.D【解析】

由題意利用函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,求得結果.【詳解】解:把函數圖象向右平移個單位長度后,可得的圖象;再根據得到函數的圖象關于直線對稱,,,,函數.在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,屬于中檔題.5.B【解析】

根據約束條件作出可行域,找到使直線的截距取最值得點,相應坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經過點時,取得最小值-5;經過點時,取得最大值5,故.故選:B【點睛】本題考查根據線性規劃求范圍,屬于基礎題.6.A【解析】

先化簡已知得,再根據題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點,且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點睛】本題考查了三角恒等變換和三角函數的圖象與性質的應用問題,是基礎題.7.A【解析】

設出A,B的坐標,利用導數求出過A,B的切線的斜率,結合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質,考查直線和拋物線的位置關系,意在考查學生對這些基礎知識的掌握能力和分析推理能力.(2)解答本題的關鍵是解題的思路,由于與切線有關,所以一般先設切點,先設A,B,,再求切線PA,PB方程,求點P坐標,再根據得到最后求直線與的斜率之積.如果先設點P的坐標,計算量就大一些.8.A【解析】

根據復數的乘法運算化簡,由復數的意義即可求得的值.【詳解】復數,由復數乘法運算化簡可得,所以由復數定義可知,解得,故選:A.【點睛】本題考查了復數的乘法運算,復數的意義,屬于基礎題.9.D【解析】

利用復數模的計算、復數的除法化簡復數,再根據復數的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【點睛】本題考查復數模的計算、復數的除法、復數的幾何意義,考查運算求解能力,屬于基礎題.10.C【解析】

根據正弦型函數的圖象得到,結合圖像變換知識得到答案.【詳解】由圖象知:,∴.又時函數值最大,所以.又,∴,從而,,只需將的圖象向左平移個單位即可得到的圖象,故選C.【點睛】已知函數的圖象求解析式(1).(2)由函數的周期求(3)利用“五點法”中相對應的特殊點求,一般用最高點或最低點求.11.D【解析】

因為,所以①不正確;因為,所以,,所以,所以函數的圖象是軸對稱圖形,②正確;易知函數的最小正周期為,因為函數的圖象關于直線對稱,所以只需研究函數在上的極大值與最小值即可.當時,,且,令,得,可知函數在處取得極大值為,③正確;因為,所以,所以函數的最小值為,④正確.故選D.12.D【解析】解:根據幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結合圖中數據,計算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點睛:根據幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結合圖中數據計算它的體積即可.二、填空題:本題共4小題,每小題5分,共20分。13.24【解析】

先求出每地一名醫生,3名護士的選派方法的種數,再減去甲乙兩名護士到同一地的種數即可.【詳解】解:每地一名醫生,3名護士的選派方法的種數有,若甲乙兩名護士到同一地的種數有,則甲乙兩名護士不到同一地的種數有.故答案為:.【點睛】本題考查利用間接法求排列組合問題,正難則反,是基礎題.14.3【解析】

作出可行域,可得當直線經過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯立,可求得點,當直線經過點時,.故答案為:3.【點睛】本題考查線性規劃,考查數形結合的數學思想,屬于基礎題.15.2【解析】

由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.16.4【解析】

由題意可得項的系數與二項式系數是相等的,利用題意,得出不等式組,求得結果.【詳解】觀察式子可知,,故答案為:4.【點睛】該題考查的是有關二項式定理的問題,涉及到的知識點有展開式中項的系數和,屬于基礎題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)1:5【解析】

(Ⅰ)由平面ABD⊥平面BCD,交線為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的體積,再作比寫出答案即可.【詳解】(Ⅰ)證明:∵平面ABD⊥平面BCD,交線為BD,又在△ABD中,AE⊥BD于E,AE?平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由題意知EF⊥BD,又AE⊥BD,如圖,以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,

建立空間直角坐標系E-xyz,設AB=BD=DC=AD=2,

則BE=ED=1,∴AE=,BC=2,BF=,則E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),

F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一個法向量為,設平面ADC的一個法向量,則,取x=1,得,∴,∴二面角A-DC-B的平面角為銳角,故余弦值為.

(Ⅲ)三棱錐B-AEF與四棱錐A-FEDC的體積的比為:1:5.【點睛】本題考查線面垂直的證明、幾何體體積計算、二面角有關的立體幾何綜合題,屬于中等題.18.(1);(2).【解析】

(1)根據題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數,最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數的值域.【詳解】(1)因為,,所以,,所以函數的最小正周期為.(2)因為,所以,所以,故函數在區間上的值域為.【點睛】本題考查正弦型函數的周期和值域,運用到向量的坐標運算、降冪公式和二倍角的正弦公式,考查化簡和計算能力.19.(1)見解析(2)見解析【解析】

(1)取的中點D,連結,.根據線面平行的判定定理即得;(2)先證,,和都是平面內的直線且交于點,由(1)得,再結合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結,.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,,.又,平面,平面,平面.【點睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.20.(1)(2)證明見解析【解析】

(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值,求出,即可得答案;(2)根據題意可知,,因為,所以可設直線CD的方程為,將直線代入曲線的方程,利用韋達定理得到的關系,再代入斜率公式可證得為定值.【詳解】(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值.所以,所以,,故橢圓E的標準方程為.(2)根據題意可知,,因為,所以可設直線CD的方程為.由,消去y可得,所以,即.直線AD的斜率,直線BC的斜率,所以,故為定值.【點睛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論