棗莊市重點中學2025屆高三教學質量檢測試題(一)數學試題理試題_第1頁
棗莊市重點中學2025屆高三教學質量檢測試題(一)數學試題理試題_第2頁
棗莊市重點中學2025屆高三教學質量檢測試題(一)數學試題理試題_第3頁
棗莊市重點中學2025屆高三教學質量檢測試題(一)數學試題理試題_第4頁
棗莊市重點中學2025屆高三教學質量檢測試題(一)數學試題理試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

棗莊市重點中學2025屆高三教學質量檢測試題(一)數學試題理試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.2.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.3.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.4.閱讀如圖所示的程序框圖,運行相應的程序,則輸出的結果為()A. B.6 C. D.5.若函數()的圖象過點,則()A.函數的值域是 B.點是的一個對稱中心C.函數的最小正周期是 D.直線是的一條對稱軸6.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.7.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.8.在區間上隨機取一個實數,使直線與圓相交的概率為()A. B. C. D.9.已知集合,則元素個數為()A.1 B.2 C.3 D.410.已知展開式中第三項的二項式系數與第四項的二項式系數相等,,若,則的值為()A.1 B.-1 C.8l D.-8111.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關系為()A.b>c>a B.c>b>a C.a>b>c D.b>a>c12.已知函數,若有2個零點,則實數的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐P-ABC中,,,,三個側面與底面所成的角均為,三棱錐的內切球的表面積為_________.14.已知為正實數,且,則的最小值為____________.15.戊戌年結束,己亥年伊始,小康,小梁,小譚,小楊,小劉,小林六人分成四組,其中兩個組各2人,另兩個組各1人,分別奔赴四所不同的學校參加演講,則不同的分配方案有_________種(用數字作答),16.已知向量,,,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若函數,試討論的單調性;(2)若,,求的取值范圍.18.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標準方程;(2)若,求點的坐標.19.(12分)已知數列滿足(),數列的前項和,(),且,.(1)求數列的通項公式:(2)求數列的通項公式.(3)設,記是數列的前項和,求正整數,使得對于任意的均有.20.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.21.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.22.(10分)已知函數.(1)若在處取得極值,求的值;(2)求在區間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據程序框圖知當時,循環終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執行的求解策略.2、C【解析】

設M,N,P分別為和的中點,得出的夾角為MN和NP夾角或其補角,根據中位線定理,結合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據題意畫出圖形:設M,N,P分別為和的中點,則的夾角為MN和NP夾角或其補角可知,.作BC中點Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點睛】此題考查異面直線夾角,關鍵點通過平移將異面直線夾角轉化為同一平面內的夾角,屬于較易題目.3、B【解析】

先分別判斷命題真假,再由復合命題的真假性,即可得出結論.【詳解】為真命題;命題是假命題,比如當,或時,則不成立.則,,均為假.故選:B【點睛】本題考查復合命題的真假性,判斷簡單命題的真假是解題的關鍵,屬于基礎題.4、D【解析】

用列舉法,通過循環過程直接得出與的值,得到時退出循環,即可求得.【詳解】執行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應該不滿足條件,退出循環,輸出S的值為.故選D.【點睛】本題主要考查了循環結構的程序框圖的應用,正確依次寫出每次循環得到的與的值是解題的關鍵,難度較易.5、A【解析】

根據函數的圖像過點,求出,可得,再利用余弦函數的圖像與性質,得出結論.【詳解】由函數()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數的圖像與性質,需熟記性質與公式,屬于基礎題.6、C【解析】

先計算出總的基本事件的個數,再計算出兩張都沒獲獎的個數,根據古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數學建模、數學計算能力,屬于基礎題.7、A【解析】

作于,于,分析可得,,再根據正弦的大小關系判斷分析得,再根據線面角的最小性判定即可.【詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當且僅當重合時取等號.又直線與平面所成角為,且為直線與平面內的直線所成角,故,當且僅當平面時取等號.故.故選:A【點睛】本題主要考查了線面角與線線角的大小判斷,需要根據題意確定角度的正弦的關系,同時運用線面角的最小性進行判定.屬于中檔題.8、D【解析】

利用直線與圓相交求出實數的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數,考查計算能力,屬于基礎題.9、B【解析】

作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數為2,故選:B.【點睛】本題考查集合的交集運算,關鍵在于作出集合所表示的點的圖象,再運用數形結合的思想,屬于基礎題.10、B【解析】

根據二項式系數的性質,可求得,再通過賦值求得以及結果即可.【詳解】因為展開式中第三項的二項式系數與第四項的二項式系數相等,故可得,令,故可得,又因為,令,則,解得令,則.故選:B.【點睛】本題考查二項式系數的性質,以及通過賦值法求系數之和,屬綜合基礎題.11、A【解析】

利用指數函數、對數函數的單調性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關系為b>c>a.故選:A.【點睛】本題考查三個數的大小的判斷,考查指數函數、對數函數的單調性等基礎知識,考查運算求解能力,是基礎題.12、C【解析】

令,可得,要使得有兩個實數解,即和有兩個交點,結合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數解,即和有兩個交點,,令,可得,當時,,函數在上單調遞增;當時,,函數在上單調遞減.當時,,若直線和有兩個交點,則.實數的取值范圍是.故選:C.【點睛】本題主要考查了根據零點求參數范圍,解題關鍵是掌握根據零點個數求參數的解法和根據導數求單調性的步驟,考查了分析能力和計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先確定頂點在底面的射影,再求出三棱錐的高以及各側面三角形的高,利用各個面的面積和乘以內切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設頂點在底面上的射影為H,H是三角形ABC的內心,內切圓半徑.三個側面與底面所成的角均為,,,的高,,設內切球的半徑為R,∴,內切球表面積.故答案為:.【點睛】本題考查三棱錐內切球的表面積問題,考查學生空間想象能力,本題解題關鍵是找到內切球的半徑,是一道中檔題.14、【解析】

,所以有,再利用基本不等式求最值即可.【詳解】由已知,,所以,當且僅當,即時,等號成立.故答案為:【點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.15、1080【解析】

按照先分組,再分配的分式,先將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,然后用分步計數原理求解.【詳解】將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,則不同的分配方案有種.故答案為:1080【點睛】本題主要考查分組分配問題,還考查了理解辨析的能力,屬于中檔題.16、-1【解析】

由向量垂直得向量的數量積為0,根據數量積的坐標運算可得結論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標運算.掌握向量垂直與數量積的關系是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)【解析】

(1)由于函數,得出,分類討論當和時,的正負,進而得出的單調性;(2)求出,令,得,設,通過導函數,可得出在上的單調性和值域,再分類討論和時,的單調性,再結合,恒成立,即可求出的取值范圍.【詳解】解:(1)因為,所以,①當時,,在上單調遞減.②當時,令,則;令,則,所以在單調遞增,在上單調遞減.綜上所述,當時,在上單調遞減;當時,在上單調遞增,在上單調遞減.(2)因為,可知,,令,得.設,則.當時,,在上單調遞增,所以在上的值域是,即.當時,沒有實根,且,在上單調遞減,,符合題意.當時,,所以有唯一實根,當時,,在上單調遞增,,不符合題意.綜上,,即的取值范圍為.【點睛】本題考查利用導數研究函數的單調性和根據恒成立問題求參數范圍,還運用了構造函數法,還考查分類討論思想和計算能力,屬于難題.18、(1);(2)【解析】

(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標,設直線的方程為,易知,可得點的坐標為,聯立方程,得到關于的一元二次方程,結合根與系數關系,可用表示的坐標,進而由三點共線,即,可用表示的坐標,再結合,可建立方程,從而求出的值,即可求得點的坐標.【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設直線的斜率為,則,所以直線的方程為,則點的坐標為,聯立方程,消去得:.設,則,所以,所以,所以.設點的坐標為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查平行線的性質,考查學生的計算求解能力,屬于難題.19、(1)().(2),.(3)【解析】

(1)依題意先求出,然后根據,求出的通項公式為,再檢驗的情況即可;(2)由遞推公式,得,結合數列性質可得數列相鄰項之間的關系,從而可求出結果;(3)通過(1)、(2)可得,所以,,,,.記,利用函數單調性可求的范圍,從而列不等式可解.【詳解】解:(1)因為數列滿足()①;②當時,.檢驗當時,成立.所以,數列的通項公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因為,所以,上式同除以,得,,即,所以,數列時首項為1,公差為1的等差數列,故,.(3)因為.所以,,,,.記,當時,.所以,當時,數列為單調遞減,當時,.從而,當時,.因此,.所以,對任意的,.綜上,.【點睛】本題考在數列通項公式的求法、等差數列的定義及通項公式、數列的單調性,考查考生的邏輯思維能力、運算求解能力以及化歸與轉化思想、分類討論思想.20、(1)詳見解析;(2).【解析】

(1)由直徑所對的圓周角為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,求出相應點的坐標,求出平面的一個法向量和平面的法向量,利用空間向量數量積運算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因為半圓弧上的一點,所以.在中,分別為的中點,所以,且.于是在中,,所以為直角三角形,且.因為,,所以.因為,,,所以平面.又平面,所以平面平面.(2)由已知,以為坐標原點,分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,,,.設平面的一個法向量為,則即,取,得.設平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【點睛】本題考查了利用線面垂直判定面面垂直、利用空間向量數量積求二面角的余弦值問題.21、(1)見解析;(2)見解析【解析】

(1)根據,分別是,的中點,即可證明,從而可證平面;(2)先根據為正三角形,且D是的中點,證出,再根據平面平面,得到平面,從而得到,結合,即可得證.【詳解】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論