江蘇鹽城市時楊中學2025年高三第二次聯考高三數學試題_第1頁
江蘇鹽城市時楊中學2025年高三第二次聯考高三數學試題_第2頁
江蘇鹽城市時楊中學2025年高三第二次聯考高三數學試題_第3頁
江蘇鹽城市時楊中學2025年高三第二次聯考高三數學試題_第4頁
江蘇鹽城市時楊中學2025年高三第二次聯考高三數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇鹽城市時楊中學2025年高三第二次聯考高三數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若均為任意實數,且,則的最小值為()A. B. C. D.2.設為的兩個零點,且的最小值為1,則()A. B. C. D.3.已知函數的零點為m,若存在實數n使且,則實數a的取值范圍是()A. B. C. D.4.已知函數的圖象的一條對稱軸為,將函數的圖象向右平行移動個單位長度后得到函數圖象,則函數的解析式為()A. B.C. D.5.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.6.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構成,則該幾何體的體積為()A. B. C. D.7.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.8.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.9.小明有3本作業本,小波有4本作業本,將這7本作業本混放在-起,小明從中任取兩本.則他取到的均是自己的作業本的概率為()A. B. C. D.10.從拋物線上一點(點在軸上方)引拋物線準線的垂線,垂足為,且,設拋物線的焦點為,則直線的斜率為()A. B. C. D.11.已知函數,則在上不單調的一個充分不必要條件可以是()A. B. C.或 D.12.已知集合,,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經過點P(1,2),則sin(π﹣α)的值是_____.14.的三個內角A,B,C所對應的邊分別為a,b,c,已知,則________.15.已知角的終邊過點,則______.16.已知集合,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線:(為參數,),曲線:(為參數).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.18.(12分)在平面直角坐標系中,已知直線的參數方程為(為參數)和曲線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)在極坐標系中,已知點是射線與直線的公共點,點是與曲線的公共點,求的最大值.19.(12分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1.(1)求橢圓的方程;(1)若過點的直線與橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由.20.(12分)新高考,取消文理科,實行“”,成績由語文、數學、外語統一高考成績和自主選考的3門普通高中學業水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據上表完成下面列聯表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數為,求的分布列以及.21.(12分)在直角坐標系中,曲線的參數方程為(為參數),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)寫出的極坐標方程與直線的直角坐標方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.22.(10分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數列中,,且,若數列的前n項和為,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結果.【詳解】由題意可得,其結果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結果為,故選D.【點睛】本題考查函數在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.2.A【解析】

先化簡已知得,再根據題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點,且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點睛】本題考查了三角恒等變換和三角函數的圖象與性質的應用問題,是基礎題.3.D【解析】

易知單調遞增,由可得唯一零點,通過已知可求得,則問題轉化為使方程在區間上有解,化簡可得,借助對號函數即可解得實數a的取值范圍.【詳解】易知函數單調遞增且有惟一的零點為,所以,∴,問題轉化為:使方程在區間上有解,即在區間上有解,而根據“對勾函數”可知函數在區間的值域為,∴.故選D.【點睛】本題考查了函數的零點問題,考查了方程有解問題,分離參數法及構造函數法的應用,考查了利用“對勾函數”求參數取值范圍問題,難度較難.4.C【解析】

根據輔助角公式化簡三角函數式,結合為函數的一條對稱軸可求得,代入輔助角公式得的解析式.根據三角函數圖像平移變換,即可求得函數的解析式.【詳解】函數,由輔助角公式化簡可得,因為為函數圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數式的應用,三角函數對稱軸的應用,三角函數圖像平移變換的應用,屬于中檔題.5.B【解析】

先判斷命題的真假,進而根據復合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.6.A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關系,遵循“長對正,高平齊,寬相等”的基本原則,其內涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.7.B【解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.8.C【解析】

畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關鍵.9.A【解析】

利用計算即可,其中表示事件A所包含的基本事件個數,為基本事件總數.【詳解】從7本作業本中任取兩本共有種不同的結果,其中,小明取到的均是自己的作業本有種不同結果,由古典概型的概率計算公式,小明取到的均是自己的作業本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎題.10.A【解析】

根據拋物線的性質求出點坐標和焦點坐標,進而求出點的坐標,代入斜率公式即可求解.【詳解】設點的坐標為,由題意知,焦點,準線方程,所以,解得,把點代入拋物線方程可得,,因為,所以,所以點坐標為,代入斜率公式可得,.故選:A【點睛】本題考查拋物線的性質,考查運算求解能力;屬于基礎題.11.D【解析】

先求函數在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數對稱軸方程為在區間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數的函數的單調性及充分不必要條件,要注意二次函數零點的求法,屬于中檔題.12.C【解析】

計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

計算sinα,再利用誘導公式計算得到答案.【詳解】由題意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案為:.【點睛】本題考查了三角函數定義,誘導公式,意在考查學生的計算能力.14.【解析】

利用正弦定理邊化角可得,從而可得,進而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:【點睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎題.15.【解析】

由題意利用任意角的三角函數的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數的定義,兩角和差正弦公式,屬于基礎題.16.【解析】

由可得集合是奇數集,由此可以得出結果.【詳解】解:因為所以集合中的元素為奇數,所以.【點睛】本題考查了集合的交集,解析出集合B中元素的性質是本題解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)消去參數,將圓的參數方程,轉化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數方程以及輔助角公式,由此求得的面積的表達式,再由三角函數最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設,所以所以當時,面積最大值為【點睛】本小題主要考查參數方程轉化為普通方程,考查直角坐標方程轉化為極坐標方程,考查利用參數的方法求三角形面積的最值,屬于中檔題.18.(1),;(2)【解析】

(1)先將直線l和圓C的參數方程化成普通方程,再分別求出極坐標方程;(2)寫出點M和點N的極坐標,根據極徑的定義分別表示出和,利用三角函數的性質求出的最大值.【詳解】解:(1),,即極坐標方程為,,極坐標方程.(2)由題可知,,當時,.【點睛】本題考查了參數方程、普通方程和極坐標方程的互化問題,極徑的定義,以及三角函數的恒等變換,屬于中檔題.19.(1)(1)不存在,理由見解析【解析】

(1)利用離心率和過點,列出等式,即得解(1)設的方程為,與橢圓聯立,利用韋達定理表示中點N的坐標,用點坐標表示,利用韋達關系代入,得到關于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當直線的斜率不存在時,,不符合題意.當的斜率存在時,設的方程為,聯立得,設,則,,,即.設,則,,,則,即,整理得,此方程無解,故的方程不存在.綜上所述,不存在直線使得.【點睛】本題考查了直線和橢圓綜合,考查了弦長和中點問題,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于較難題.20.(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯;(3)分布列見解析,.【解析】

(1)分別求出中青年、中老年對高考了解的頻數,即可求出概率;(2)根據數據列出列聯表,求出的觀測值,對照表格,即可得出結論;(3)年齡在的被調查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機變量分布列,根據期望公式即可求解.【詳解】(1)由題中數據可知,中青年對新高考了解的概率,中老年對新高考了解的概率.(2)列聯表如圖所示了解新高考不了解新高考總計中青年22830老年81220總計302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯.(3)年齡在的被調查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數可能取值為0,1,2,則;;.所以的分布列為012.【點睛】本題考查概率、獨立性檢驗及隨機變量分布列和期望,考查計算求解能力,屬于基礎題.21.(1),(2)存在,【解析】

(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標方程,再轉化為極坐標方程.根據極坐標和直角坐標轉化公式,求得直線的直角坐標方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標伸長到原來的2倍,得到曲線的直角坐標方程為,其極坐標方程為,直線的直角坐標方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.∴由圖像可知,存在這樣的點,,則,且點到直線的距離,∴,∴.【點睛】本小題主要考查坐標變換,考查直線和圓的位置關系,考查極坐標方程和直角坐標方程相互轉化,考查參數方程化為普通方程,考查數形結合的數學思想方法,屬于中檔題.22.(Ⅰ)函數在上單調遞減,在單調遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】

(Ⅰ)先求出函數f(x)的導數,通過解關于導數的不等式,從而求出函數的單調區間;(Ⅱ)設g(x)=f(x)﹣ax,先求出函數g(x)的導

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論