江蘇信息職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
江蘇信息職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
江蘇信息職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
江蘇信息職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
江蘇信息職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)江蘇信息職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與可視化基礎(chǔ)》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理。標(biāo)準(zhǔn)化處理的主要目的是?()A.消除量綱的影響B(tài).使數(shù)據(jù)符合正態(tài)分布C.減少數(shù)據(jù)的誤差D.提高數(shù)據(jù)的準(zhǔn)確性2、在選擇數(shù)據(jù)分析工具時(shí),需要考慮多種因素。假設(shè)要為一個(gè)小型團(tuán)隊(duì)選擇合適的數(shù)據(jù)分析工具,以下關(guān)于工具選擇的描述,正確的是:()A.只追求功能強(qiáng)大的高端工具,不考慮成本和團(tuán)隊(duì)的使用難度B.隨意選擇一個(gè)流行的工具,不考慮其與團(tuán)隊(duì)需求的匹配度C.評(píng)估團(tuán)隊(duì)的技術(shù)水平、數(shù)據(jù)規(guī)模、分析需求和預(yù)算等因素,選擇易于使用、功能滿足需求且性價(jià)比高的數(shù)據(jù)分析工具,如Excel、Python、R等D.認(rèn)為一旦選擇了一個(gè)工具,就不能更換,不考慮工具的更新和發(fā)展3、當(dāng)分析一個(gè)在線教育平臺(tái)的課程評(píng)價(jià)數(shù)據(jù),以評(píng)估教師的教學(xué)質(zhì)量和課程的效果??紤]到評(píng)價(jià)的主觀性和多樣性,以下哪種方式可能有助于更客觀地綜合評(píng)價(jià)?()A.計(jì)算平均值B.去除極端值后計(jì)算平均值C.采用眾數(shù)D.以上都是4、假設(shè)要對(duì)大量數(shù)據(jù)進(jìn)行快速排序,以下哪種算法在平均情況下性能較好?()A.冒泡排序B.插入排序C.快速排序D.選擇排序5、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,以下哪種方法較為常見?()A.Z-score標(biāo)準(zhǔn)化B.Min-Max標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是6、假設(shè)要分析某電商平臺(tái)用戶的購(gòu)買行為隨時(shí)間的變化趨勢(shì),以下哪種可視化方法較為合適?()A.折線圖B.柱狀圖C.餅圖D.箱線圖7、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏模式和知識(shí)方面發(fā)揮著重要作用。假設(shè)要從大量銷售數(shù)據(jù)中挖掘潛在的客戶購(gòu)買模式,以下關(guān)于數(shù)據(jù)挖掘技術(shù)選擇的描述,正確的是:()A.僅使用關(guān)聯(lián)規(guī)則挖掘,不考慮其他技術(shù)B.盲目應(yīng)用所有的數(shù)據(jù)挖掘算法,不考慮數(shù)據(jù)特點(diǎn)和業(yè)務(wù)需求C.結(jié)合聚類分析、分類算法和關(guān)聯(lián)規(guī)則挖掘等技術(shù),根據(jù)數(shù)據(jù)特點(diǎn)和問題需求選擇合適的方法D.認(rèn)為數(shù)據(jù)挖掘結(jié)果一定準(zhǔn)確,無(wú)需進(jìn)一步驗(yàn)證和解釋8、對(duì)于一個(gè)包含大量重復(fù)數(shù)據(jù)的數(shù)據(jù)表,以下哪種操作可以有效地減少數(shù)據(jù)存儲(chǔ)空間?()A.建立索引B.數(shù)據(jù)壓縮C.數(shù)據(jù)分區(qū)D.數(shù)據(jù)清理9、數(shù)據(jù)分析中的時(shí)間序列分析常用于預(yù)測(cè)未來(lái)趨勢(shì)。假設(shè)要預(yù)測(cè)未來(lái)一個(gè)月的某商品銷售量,該商品的銷售數(shù)據(jù)具有明顯的季節(jié)性和趨勢(shì)性。以下哪種時(shí)間序列預(yù)測(cè)模型在這種情況下更有可能提供準(zhǔn)確的預(yù)測(cè)?()A.移動(dòng)平均模型B.指數(shù)平滑模型C.ARIMA模型D.Prophet模型10、在數(shù)據(jù)庫(kù)中,若要提高數(shù)據(jù)的寫入性能,以下哪種存儲(chǔ)引擎可能更適合?()A.InnoDBB.MyISAMC.MemoryD.Archive11、在數(shù)據(jù)挖掘中,以下哪種算法常用于對(duì)客戶進(jìn)行分類,以實(shí)現(xiàn)精準(zhǔn)營(yíng)銷?()A.決策樹算法B.關(guān)聯(lián)規(guī)則算法C.神經(jīng)網(wǎng)絡(luò)算法D.遺傳算法12、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的應(yīng)用領(lǐng)域有很多,其中金融領(lǐng)域是一個(gè)重要的應(yīng)用領(lǐng)域。以下關(guān)于數(shù)據(jù)挖掘在金融領(lǐng)域的應(yīng)用,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以用于風(fēng)險(xiǎn)評(píng)估和信用評(píng)分B.數(shù)據(jù)挖掘可以用于市場(chǎng)預(yù)測(cè)和投資決策C.數(shù)據(jù)挖掘可以用于客戶關(guān)系管理和營(yíng)銷活動(dòng)D.數(shù)據(jù)挖掘的結(jié)果可以直接用于金融交易,無(wú)需人工干預(yù)13、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣的方法有很多,其中隨機(jī)抽樣是一種常用的方法。以下關(guān)于隨機(jī)抽樣的描述中,錯(cuò)誤的是?()A.隨機(jī)抽樣可以保證樣本的代表性和隨機(jī)性B.隨機(jī)抽樣可以減少數(shù)據(jù)的數(shù)量和復(fù)雜度C.隨機(jī)抽樣可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性D.隨機(jī)抽樣只適用于大規(guī)模數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集無(wú)法使用14、當(dāng)分析一個(gè)金融投資組合的績(jī)效數(shù)據(jù),包括不同資產(chǎn)的收益率、風(fēng)險(xiǎn)指標(biāo)、相關(guān)性等,以優(yōu)化投資組合配置。以下哪個(gè)原則可能是在風(fēng)險(xiǎn)和收益平衡中需要首要考慮的?()A.最大化收益率B.最小化風(fēng)險(xiǎn)C.符合投資者的風(fēng)險(xiǎn)偏好D.以上都不是15、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測(cè)一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測(cè)方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類的方法16、數(shù)據(jù)分析在醫(yī)療領(lǐng)域有著重要的應(yīng)用。假設(shè)一家醫(yī)院想要分析患者的病歷數(shù)據(jù),以提高醫(yī)療服務(wù)質(zhì)量。以下關(guān)于數(shù)據(jù)分析在醫(yī)療中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以預(yù)測(cè)疾病的發(fā)生風(fēng)險(xiǎn),提前采取預(yù)防措施B.分析治療效果,優(yōu)化治療方案C.醫(yī)療數(shù)據(jù)的隱私保護(hù)不重要,只要能得到有價(jià)值的分析結(jié)果就行D.幫助醫(yī)院進(jìn)行資源規(guī)劃和管理,提高運(yùn)營(yíng)效率17、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的工具有很多,其中Tableau是一種常用的工具。以下關(guān)于Tableau的描述中,錯(cuò)誤的是?()A.Tableau可以連接多種數(shù)據(jù)源,進(jìn)行數(shù)據(jù)的導(dǎo)入和整合B.Tableau可以制作各種類型的圖表,進(jìn)行數(shù)據(jù)可視化C.Tableau的操作簡(jiǎn)單易學(xué),適用于非專業(yè)用戶D.Tableau只能處理小規(guī)模數(shù)據(jù)集,對(duì)于大規(guī)模數(shù)據(jù)集無(wú)法處理18、數(shù)據(jù)分析中的數(shù)據(jù)隱私保護(hù)是一個(gè)重要的問題。假設(shè)一家公司要對(duì)員工的個(gè)人數(shù)據(jù)進(jìn)行分析,同時(shí)需要確保數(shù)據(jù)的使用符合法律和道德規(guī)范。以下哪種措施可能有助于保護(hù)員工的隱私?()A.匿名化處理數(shù)據(jù)B.只在公司內(nèi)部網(wǎng)絡(luò)中分析數(shù)據(jù)C.獲得員工的明確同意D.以上措施都有助于保護(hù)隱私19、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的目的,錯(cuò)誤的是?()A.減少數(shù)據(jù)的數(shù)量,降低數(shù)據(jù)分析的成本和時(shí)間B.保證樣本具有代表性,能夠反映總體的特征和趨勢(shì)C.避免數(shù)據(jù)的過擬合,提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.增加數(shù)據(jù)的多樣性,提高數(shù)據(jù)分析的結(jié)果的創(chuàng)新性和實(shí)用性20、某電商平臺(tái)想要了解商品銷量與廣告投入之間的關(guān)系,收集了大量數(shù)據(jù)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,不正確的是?()A.檢查數(shù)據(jù)的完整性B.直接刪除所有缺失值C.處理異常值D.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化21、對(duì)于一個(gè)包含分類變量和數(shù)值變量的數(shù)據(jù)集,若要進(jìn)行關(guān)聯(lián)規(guī)則挖掘,以下哪種方法較為合適?()A.Apriori算法B.FP-Growth算法C.Eclat算法D.以上都是22、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的原則有很多,其中簡(jiǎn)潔明了是一個(gè)重要的原則。以下關(guān)于簡(jiǎn)潔明了的描述中,錯(cuò)誤的是?()A.簡(jiǎn)潔明了的可視化圖表可以讓讀者更容易理解數(shù)據(jù)的含義B.簡(jiǎn)潔明了的可視化圖表應(yīng)該避免使用過多的顏色和裝飾C.簡(jiǎn)潔明了的可視化圖表可以通過減少數(shù)據(jù)的維度和細(xì)節(jié)來(lái)實(shí)現(xiàn)D.簡(jiǎn)潔明了的可視化圖表只適用于簡(jiǎn)單的數(shù)據(jù)展示,對(duì)于復(fù)雜的數(shù)據(jù)無(wú)法處理23、假設(shè)正在分析一個(gè)網(wǎng)站的用戶行為數(shù)據(jù),以優(yōu)化網(wǎng)站布局。以下關(guān)于用戶行為分析的描述,正確的是:()A.只關(guān)注用戶的點(diǎn)擊次數(shù),就能了解用戶的興趣和偏好B.頁(yè)面停留時(shí)間越短,說明用戶對(duì)該頁(yè)面越感興趣C.分析用戶的訪問路徑可以發(fā)現(xiàn)網(wǎng)站的熱門頁(yè)面和流程瓶頸D.用戶的注冊(cè)信息對(duì)分析用戶行為沒有幫助24、在數(shù)據(jù)可視化中,選擇合適的圖表類型對(duì)于清晰傳達(dá)信息至關(guān)重要。假設(shè)要展示不同地區(qū)在過去十年間的人口增長(zhǎng)趨勢(shì),以下哪種圖表可能是最合適的?()A.餅圖B.雷達(dá)圖C.折線圖D.氣泡圖25、在對(duì)一家餐廳的營(yíng)業(yè)數(shù)據(jù)進(jìn)行分析,例如菜品銷售數(shù)量、顧客評(píng)價(jià)、營(yíng)業(yè)時(shí)間段等,以制定營(yíng)銷策略和優(yōu)化菜單。以下哪個(gè)因素可能對(duì)餐廳的盈利能力產(chǎn)生最大影響?()A.熱門菜品的推廣B.營(yíng)業(yè)時(shí)間段的調(diào)整C.菜單的更新和優(yōu)化D.以上都是26、在數(shù)據(jù)分析中的分類算法評(píng)估指標(biāo)中,以下關(guān)于準(zhǔn)確率和召回率的說法,不正確的是()A.準(zhǔn)確率是指分類正確的樣本數(shù)占總樣本數(shù)的比例B.召回率是指被正確分類的正例樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.在某些情況下,準(zhǔn)確率和召回率可能存在矛盾,需要根據(jù)具體問題權(quán)衡二者的重要性D.為了綜合評(píng)估分類算法的性能,只需要關(guān)注準(zhǔn)確率和召回率其中一個(gè)指標(biāo)即可,另一個(gè)可以忽略27、數(shù)據(jù)分析中的生存分析用于研究事件發(fā)生的時(shí)間。假設(shè)我們要研究患者的生存時(shí)間。以下關(guān)于生存分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以計(jì)算生存率、中位生存時(shí)間等指標(biāo)B.Cox比例風(fēng)險(xiǎn)模型常用于生存分析中的風(fēng)險(xiǎn)因素評(píng)估C.生存分析只適用于醫(yī)學(xué)領(lǐng)域,在其他領(lǐng)域沒有應(yīng)用D.可以考慮協(xié)變量對(duì)生存時(shí)間的影響28、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類B.MinMaxScaler類C.Normalizer類D.以上都是29、當(dāng)分析數(shù)據(jù)的分布特征時(shí),以下哪個(gè)圖形可以直觀地展示數(shù)據(jù)的眾數(shù)?()A.直方圖B.莖葉圖C.箱線圖D.餅圖30、數(shù)據(jù)分析中的推薦系統(tǒng)廣泛應(yīng)用于電商、娛樂等領(lǐng)域。假設(shè)要為一個(gè)在線音樂平臺(tái)構(gòu)建推薦系統(tǒng),根據(jù)用戶的歷史播放記錄和偏好為其推薦歌曲。以下哪種推薦算法在處理這種音樂推薦場(chǎng)景時(shí)更能滿足用戶的個(gè)性化需求?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.基于知識(shí)的推薦D.混合推薦二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在醫(yī)療科研中,數(shù)據(jù)分析對(duì)于疾病研究和臨床試驗(yàn)具有重要意義。以某醫(yī)學(xué)研究機(jī)構(gòu)為例,闡述如何通過數(shù)據(jù)分析來(lái)挖掘疾病的潛在關(guān)聯(lián)、評(píng)估治療效果、優(yōu)化臨床試驗(yàn)設(shè)計(jì),以及如何處理醫(yī)療數(shù)據(jù)的復(fù)雜性和倫理問題。2、(本題5分)在物流倉(cāng)儲(chǔ)管理中,如何利用數(shù)據(jù)分析優(yōu)化貨物存儲(chǔ)布局,提高倉(cāng)庫(kù)空間利用率和貨物出入庫(kù)效率。3、(本題5分)金融行業(yè)擁有豐富的交易數(shù)據(jù)和客戶信息。分析如何運(yùn)用數(shù)據(jù)分析技術(shù),像風(fēng)險(xiǎn)評(píng)估模型、投資組合優(yōu)化等,識(shí)別金融風(fēng)險(xiǎn)、發(fā)現(xiàn)投資機(jī)會(huì),提升金融機(jī)構(gòu)的風(fēng)險(xiǎn)管理能力和盈利能力,同時(shí)探討在數(shù)據(jù)質(zhì)量、模型準(zhǔn)確性和監(jiān)管要求方面所面臨的挑戰(zhàn)及解決方案。4、(本題5分)旅游業(yè)積累了大量的游客出行數(shù)據(jù)和消費(fèi)數(shù)據(jù)。論述如何通過數(shù)據(jù)分析技術(shù),像旅游目的地推薦模型、游客滿意度分析等,精準(zhǔn)定位旅游市場(chǎng)需求、優(yōu)化旅游產(chǎn)品設(shè)計(jì),促進(jìn)旅游業(yè)的發(fā)展,同時(shí)思考數(shù)據(jù)季節(jié)性波動(dòng)和地區(qū)差異性對(duì)分析結(jié)果的影響及應(yīng)對(duì)措施。5、(本題5分)在電信行業(yè)的套餐設(shè)計(jì)中,如何借助數(shù)據(jù)分析來(lái)了解用戶需求、消費(fèi)行為和網(wǎng)絡(luò)使用模式,以制定合理的套餐方案和定價(jià)策略,同時(shí)提高用戶滿意度和運(yùn)營(yíng)商的收益。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)說明數(shù)據(jù)挖掘中的分類和預(yù)測(cè)任務(wù)的區(qū)別,舉例說明它們?cè)趯?shí)際應(yīng)用中的場(chǎng)景,并解釋如何選擇合適的算法來(lái)完成這些任務(wù)。2、(本題5分)解釋數(shù)據(jù)倉(cāng)庫(kù)中的索引優(yōu)化策略,說明如何選擇合適的索引來(lái)提高數(shù)據(jù)查詢性能,并舉例說明。3、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的特征工程,包括特征提取、選擇和構(gòu)建的方法,以及它們對(duì)模型性能的影響。4、(本

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論