




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古鄂爾多斯市2025年高三5月階段性教學質量檢測試題數學試題文考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的定義域為,則函數的定義域為()A. B.C. D.2.已知α,β表示兩個不同的平面,l為α內的一條直線,則“α∥β是“l∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件3.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立4.設復數滿足(為虛數單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.6.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.7.函數圖象的大致形狀是()A. B.C. D.8.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.9.函數的部分圖象大致是()A. B.C. D.10.設集合,則()A. B.C. D.11.已知復數是正實數,則實數的值為()A. B. C. D.12.已知向量,則向量在向量方向上的投影為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,則曲線在點處的切線方程是_______.14.設第一象限內的點(x,y)滿足約束條件,若目標函數z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.15.若變量,滿足約束條件則的最大值為________.16.已知實數、滿足,且可行域表示的區域為三角形,則實數的取值范圍為______,若目標函數的最小值為-1,則實數等于______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.18.(12分)記為數列的前項和,已知,等比數列滿足,.(1)求的通項公式;(2)求的前項和.19.(12分)已知拋物線的頂點為原點,其焦點關于直線的對稱點為,且.若點為的準線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.20.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點是棱的中點,,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.21.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.22.(10分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】試題分析:由題意,得,解得,故選A.考點:函數的定義域.2、A【解析】試題分析:利用面面平行和線面平行的定義和性質,結合充分條件和必要條件的定義進行判斷.解:根據題意,由于α,β表示兩個不同的平面,l為α內的一條直線,由于“α∥β,則根據面面平行的性質定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結論,反之不成立,∴“α∥β是“l∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.3、D【解析】
取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.4、A【解析】
由復數的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數對應的點所在象限的求解,涉及到復數的除法運算,屬于基礎題.5、C【解析】
設M,N,P分別為和的中點,得出的夾角為MN和NP夾角或其補角,根據中位線定理,結合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據題意畫出圖形:設M,N,P分別為和的中點,則的夾角為MN和NP夾角或其補角可知,.作BC中點Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點睛】此題考查異面直線夾角,關鍵點通過平移將異面直線夾角轉化為同一平面內的夾角,屬于較易題目.6、B【解析】
首先求得兩曲線的交點坐標,據此可確定積分區間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯立方程:可得:,,結合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項.【點睛】本題主要考查定積分的概念與計算,屬于中等題.7、B【解析】
判斷函數的奇偶性,可排除A、C,再判斷函數在區間上函數值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數是奇函數,可排除A、C;又當,,可排除D;故選:B.【點睛】本題考查函數表達式判斷函數圖像,屬于中檔題.8、D【解析】
根據三視圖知,該幾何體是一條垂直于底面的側棱為2的四棱錐,畫出圖形,結合圖形求出底面積代入體積公式求它的體積.【詳解】根據三視圖知,該幾何體是側棱底面的四棱錐,如圖所示:結合圖中數據知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.屬于中等題.9、C【解析】
判斷函數的性質,和特殊值的正負,以及值域,逐一排除選項.【詳解】,函數是奇函數,排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據函數解析式判斷函數圖象,屬于基礎題型,一般根據選項判斷函數的奇偶性,零點,特殊值的正負,以及單調性,極值點等排除選項.10、B【解析】
直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎題.11、C【解析】
將復數化成標準形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數,所以且,解得.故選:C【點睛】本題考查復數的基本定義,屬基礎題.12、A【解析】
投影即為,利用數量積運算即可得到結論.【詳解】設向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點睛】本題主要考察了向量的數量積運算,難度不大,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求導,x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點睛】本題考查切線方程,求導法則及運算,考查直線方程,考查計算能力,是基礎題14、【解析】不等式表示的平面區域陰影部分,當直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(8,10)時,目標函數z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當且僅當時取等號,則的最小值為.15、7【解析】
畫出不等式組表示的平面區域,數形結合,即可容易求得目標函數的最大值.【詳解】作出不等式組所表示的平面區域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區域、線性規劃,主要考查推理論證能力以及數形結合思想,屬基礎題.16、【解析】
作出不等式組對應的平面區域,利用目標函數的幾何意義,結合目標函數的最小值,利用數形結合即可得到結論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標函數可視為,則為斜率為1的直線縱截距的相反數,該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得.試題解析:(1)連結AC、BD交于點O,以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系.因為PA=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因為=0,所以MN⊥AD(2)解:因為M在PA上,可設=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因為平面ABD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點:用空間向量法證垂直、求二面角.18、(1)(2)當時,;當時,.【解析】
(1)利用數列與的關系,求得;(2)由(1)可得:,,算出公比,利用等比數列的前項和公式求出.【詳解】(1)當時,,當時,,因為適合上式,所以.(2)由(1)得,,設等比數列的公比為,則,解得,當時,,當時,.【點睛】本題主要考查數列與的關系、等比數列的通項公式、前項和公式等基礎知識,考查運算求解能力..19、(1)(2)見解析,最小值為4【解析】
(1)根據焦點到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設出的坐標,利用導數求得切線的方程,由此判斷出直線恒過拋物線焦點.求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意,解得(負根舍去)∴拋物線的方程為(2)設點,由,即,得∴拋物線在點處的切線的方程為,即∵,∴∵點在切線上,①,同理,②綜合①、②得,點的坐標都滿足方程.即直線恒過拋物線焦點當時,此時,可知:當,此時直線直線的斜率為,得于是,而把直線代入中消去得,即:當時,最小,且最小值為4【點睛】本小題主要考查點到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過定點問題,考查拋物線中三角形面積的最值的求法,考查運算求解能力,屬于難題.20、(1)見解析(2)【解析】
(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進而證得結論.(2)過作交于,由為的中點,結合已知有平面.則,可求得.建立坐標系分別求得面的法向量,平面的一個法向量為,利用公式即可求得結果.【詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面..中,,為的中點,.又、平面,,平面.平面,平面平面.(2)解:過作交于,如圖為的中點,,.又平面,平面.,.所以,又、、兩兩互相垂直,以、、為坐標軸建立如圖所示的空間直角坐標系.,,,設平面的法向量,則,即.令,則,..平面的一個法向量為.二面角的余弦值為.【點睛】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關系,考查利用向量法求二面角的方法,難度一般.21、(1);(2)【解析】
(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設出直線方程,聯立方程組,用韋達定理和弦長公式以及四邊形的面積公式計算即可.【詳解】(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,,∵過點且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當直線的斜率不存在時,直線的斜率為0,此時(ii)當直線的斜率為零時,.(iii)當直線的斜率存在且不等于零時,設直線的方程為,聯立,得,設的橫坐標分別為,則.所以,(注:的長度也可以用點到直線的距離和勾股定理計算.)由可得直線的方程為,聯立橢圓的方程消去,得設的橫坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 離婚協議份數要求與生效程序規定的財產分配合同
- 網絡直播設備故障排查與快速修復服務合同
- 節日電商促銷活動消費者隱私保護與風控合同
- 海外留學生家長保險代理服務協議
- 時尚服飾品牌市場推廣活動保險補充協議
- 網店運營稅費代繳及稅務合規服務合同
- 建筑材料耐久性試驗補充合同
- 消防安全管理責任補充協議
- 高端攝影師與傳媒機構合作協議
- 草牧場承包協議書
- 國家開放大學漢語言文學本科《中國現代文學專題》期末紙質考試第一大題選擇題庫2025春期版
- 數字修約考試題及答案
- 山東大學《軍事理論》考試試卷及答案解析
- 面向非結構化文本的事件關系抽取關鍵技術剖析與實踐
- 《國別和區域研究專題》教學大綱
- 2025年日歷表含農歷(2025年12個月日歷-每月一張A4可打印)
- 《ESC血壓升高和高血壓管理2024指南》解讀
- 學科競賽在提升學生團隊協作能力中的作用
- 《公共管理學基礎》題庫及答案
- 基本藥物工作計劃
- 2025年行政執法人員執法資格考試必考題庫及答案(共232題)
評論
0/150
提交評論