




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省滁州西城區中學2025年高三下學期第一次聯數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數為自然對數的底數)在區間上不是單調函數,則實數的取值范圍是()A. B. C. D.2.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現從農歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.3.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.4.已知,則的值等于()A. B. C. D.5.已知函數f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數)的圖象關于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.46.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.7.定義在R上的偶函數f(x)滿足f(x+2)=f(x),當x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)8.集合,則集合的真子集的個數是A.1個 B.3個 C.4個 D.7個9.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.10.函數的大致圖像為()A. B.C. D.11.函數的圖像大致為().A. B.C. D.12.已知向量,,設函數,則下列關于函數的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數二、填空題:本題共4小題,每小題5分,共20分。13.設命題:,,則:__________.14.已知平面向量,的夾角為,且,則=____15.一個四面體的頂點在空間直角坐標系中的坐標分別是,,,,則該四面體的外接球的體積為__________.16.若實數滿足不等式組,則的最小值是___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,其中.(1)討論函數的零點個數;(2)求證:.18.(12分)已知函數.(1)若是函數的極值點,求的單調區間;(2)當時,證明:19.(12分)已知.(1)當時,求不等式的解集;(2)若,,證明:.20.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.21.(12分)在中,,是邊上一點,且,.(1)求的長;(2)若的面積為14,求的長.22.(10分)已知函數,.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數在上的最小值;(Ⅲ)若函數,當時,的最大值為,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求得的導函數,由此構造函數,根據題意可知在上有變號零點.由此令,利用分離常數法結合換元法,求得的取值范圍.【詳解】,設,要使在區間上不是單調函數,即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數研究函數的單調性,考查方程零點問題的求解策略,考查化歸與轉化的數學思想方法,屬于中檔題.2、B【解析】
利用古典概型概率計算方法分析出符合題意的基本事件個數,結合組合數的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點睛】本小題主要考查古典概型的計算,考查組合數的計算,考查學生分析問題的能力,難度較易.3、B【解析】
由題中垂直關系,可得漸近線的方程,結合,構造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數學運算的能力,屬于中檔題.4、A【解析】
由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數中的誘導公式,屬于簡單題5、C【解析】
根據對稱性即可求出答案.【詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點睛】本題主要考查函數的對稱性的應用,屬于中檔題.6、B【解析】如圖,已知,,
∴,解得
,∴,解得
.∴折斷后的竹干高為4.55尺故選B.7、B【解析】
根據函數的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數f(x)在定義域上的圖象,由此結合選項判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據周期為2依次平移,并結合f(x)是偶函數作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【點睛】本題考查函數性質的綜合運用,考查函數值的大小比較,考查數形結合思想,屬于中檔題.8、B【解析】
由題意,結合集合,求得集合,得到集合中元素的個數,即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數個數的求解,其中作出集合的運算,得到集合,再由真子集個數的公式作出計算是解答的關鍵,著重考查了推理與運算能力.9、D【解析】
根據,先確定出的長度,然后利用雙曲線定義將轉化為的關系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據雙曲線中的長度關系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.10、D【解析】
通過取特殊值逐項排除即可得到正確結果.【詳解】函數的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.11、A【解析】
本題采用排除法:由排除選項D;根據特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數,則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數解析式較復雜的圖象的判斷;利用函數奇偶性、特殊值符號的正負等有關性質進行逐一排除是解題的關鍵;屬于中檔題.12、D【解析】
當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數.本題選擇D選項.二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】
存在符號改任意符號,結論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結論:對于一般命題的否定只需直接否定結論即可.14、1【解析】
根據平面向量模的定義先由坐標求得,再根據平面向量數量積定義求得;將化簡并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數量積定義可得,根據平面向量模的求法可知,代入可得,解得,故答案為:1.【點睛】本題考查了平面向量模的求法及簡單應用,平面向量數量積的定義及運算,屬于基礎題.15、【解析】
將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補體法,由空間點坐標可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎題.16、-1【解析】作出可行域,如圖:由得,由圖可知當直線經過A點時目標函數取得最小值,A(1,0)所以-1故答案為-1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)時,有一個零點;當且時,有兩個零點;(2)見解析【解析】
(1)利用的導函數,求得的最大值的表達式,對進行分類討論,由此判斷出的零點的個數.(2)由,得到和,構造函數,利用導數證得,即有,從而證得,即.【詳解】(1),∴當時,,當時,在上遞增,在上遞減,.令在上遞減,在上遞增,,當且僅當時取等號.①時,有一個零點;②時,,此時有兩個零點;③時,,令在上遞增,,此時有兩個零點;綜上:時,有一個零點;當且時,有兩個零點;(2)由(1)可知:,令在上遞增,.【點睛】本小題主要考查利用導數研究函數的零點,考查利用導數證明不等式,考查分類討論的數學思想方法,考查化歸與轉化的數學思想方法,屬于中檔題.18、(1)遞減區間為(-1,0),遞增區間為(2)見解析【解析】
(1)根據函數解析式,先求得導函數,由是函數的極值點可求得參數.求得函數定義域,并根據導函數的符號即可判斷單調區間.(2)當時,.代入函數解析式放縮為,代入證明的不等式可化為,構造函數,并求得,由函數單調性及零點存在定理可知存在唯一的,使得成立,因而求得函數的最小值,由對數式變形化簡可證明,即成立,原不等式得證.【詳解】(1)函數可求得,則解得所以,定義域為,在單調遞增,而,∴當時,,單調遞減,當時,,單調遞增,此時是函數的極小值點,的遞減區間為,遞增區間為(2)證明:當時,,因此要證當時,,只需證明,即令,則,在是單調遞增,而,∴存在唯一的,使得,當,單調遞減,當,單調遞增,因此當時,函數取得最小值,,,故,從而,即,結論成立.【點睛】本題考查了由函數極值求參數,并根據導數判斷函數的單調區間,利用導數證明不等式恒成立,構造函數法的綜合應用,屬于難題.19、(1)(2)見證明【解析】
(1)利用零點分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質進行證明.【詳解】(1)解:當時,不等式可化為.當時,,,所以;當時,,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點睛】本題主要考查含有絕對值不等式問題的求解,含有絕對值不等式的解法一般是使用零點分段討論法.20、(1);(2)【解析】
(1)根據同角三角函數式可求得,結合正弦和角公式求得,即可求得,進而由三角函數(2)設根據余弦定理及基本不等式,可求得的最大值,結合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數關系式可得,則,則,所以.(2)設在中由余弦定理可得,代入可得,由基本不等式可知,即,當且僅當時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點睛】本題考查了正弦和角公式化簡三角函數式的應用,余弦定理及不等式式求最值的綜合應用,屬于中檔題.21、(1)1;(2)5.【解析】
(1)由同角三角函數關系求得,再由兩角差的正弦公式求得,最后由正弦定理構建方程,求得答案.(2)在中,由正弦定理構建方程求得AB,再由任意三角形的面積公式構建方程求得BC,最后由余弦定理構建方程求得AC.【詳解】(1)據題意,,且,所以.所以.在中,據正弦定理可知,,所以.(2)在中,據正弦定理可知,所以.因為的面積為14,所以,即,得.在中,據余弦定理可知,,所以.【點睛】本題考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食用玫瑰收購合同范本
- 工廠管道改造合同范本
- 聘任制合同范本
- 水刀訂購合同范本
- 入圍方式、備考建議2024強基計劃備考必看
- 品牌西裝租借合同范本
- 極簡學術答辯模板-1
- 2025年標準多人勞動合同模板
- 2025工程承包合同(承包方)范本
- 2025溫室用地租賃合同
- 2025年蘭州糧油集團有限公司招聘筆試參考題庫含答案解析
- 語文新課標“整本書閱讀”深度解讀及案例
- GB 21258-2024燃煤發電機組單位產品能源消耗限額
- 口腔醫學數字技術
- 全國高中語文優質課一等獎《雷雨》 課件
- 高中生社會實踐證明
- 常用平面軸規格表
- “三會一課”記錄表
- 分部分項工程驗收記錄表(共19頁)
- 大學物理實驗坐標紙(共1頁)
- 年產10萬噸年聚丙烯聚合工段工藝設計
評論
0/150
提交評論