廣西安全工程職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
廣西安全工程職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
廣西安全工程職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
廣西安全工程職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
廣西安全工程職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)廣西安全工程職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)基礎(chǔ)》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境進(jìn)行交互并根據(jù)獎(jiǎng)勵(lì)來(lái)學(xué)習(xí)最優(yōu)策略。假設(shè)一個(gè)機(jī)器人要在一個(gè)復(fù)雜的迷宮環(huán)境中找到出口,每次到達(dá)出口會(huì)獲得高獎(jiǎng)勵(lì),碰到墻壁會(huì)獲得低獎(jiǎng)勵(lì)。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法可能更適合訓(xùn)練機(jī)器人找到最優(yōu)路徑?()A.Q-learning算法,通過(guò)估計(jì)狀態(tài)動(dòng)作值來(lái)選擇動(dòng)作B.SARSA算法,基于當(dāng)前策略進(jìn)行學(xué)習(xí)C.策略梯度算法,直接優(yōu)化策略D.蒙特卡羅方法,通過(guò)多次試驗(yàn)估計(jì)價(jià)值2、在人工智能的發(fā)展中,模型壓縮和優(yōu)化技術(shù)有助于在資源受限的設(shè)備上部署模型。假設(shè)要將一個(gè)大型的人工智能模型部署到移動(dòng)設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的描述,哪一項(xiàng)是不正確的?()A.可以采用剪枝、量化等方法減少模型的參數(shù)數(shù)量和計(jì)算量B.模型壓縮可能會(huì)導(dǎo)致一定程度的性能損失,但可以通過(guò)優(yōu)化算法來(lái)彌補(bǔ)C.模型壓縮和優(yōu)化只適用于深度學(xué)習(xí)模型,對(duì)傳統(tǒng)機(jī)器學(xué)習(xí)模型無(wú)效D.需要在模型性能和資源消耗之間進(jìn)行平衡,找到最優(yōu)的解決方案3、在人工智能的發(fā)展過(guò)程中,可解釋性是一個(gè)重要的問(wèn)題。假設(shè)一個(gè)深度學(xué)習(xí)模型在醫(yī)療診斷中做出了關(guān)鍵決策,但無(wú)法解釋其決策的依據(jù)。這可能會(huì)帶來(lái)哪些潛在的風(fēng)險(xiǎn)?()A.醫(yī)生可能無(wú)法信任模型的結(jié)果B.模型的準(zhǔn)確率可能會(huì)下降C.模型的訓(xùn)練時(shí)間可能會(huì)增加D.模型的復(fù)雜度可能會(huì)降低4、在人工智能的文本生成任務(wù)中,假設(shè)要生成一篇邏輯連貫、語(yǔ)言通順的文章,以下關(guān)于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語(yǔ)法和邏輯B.深度學(xué)習(xí)的文本生成模型可以學(xué)習(xí)語(yǔ)言的模式和規(guī)律,但可能存在重復(fù)和不一致的問(wèn)題C.文本生成模型的輸出完全由輸入的提示信息決定,沒(méi)有任何隨機(jī)性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫(xiě)作水平相當(dāng)?shù)奈恼?、在人工智能的自然語(yǔ)言處理領(lǐng)域中,當(dāng)需要開(kāi)發(fā)一個(gè)能夠準(zhǔn)確理解和生成人類語(yǔ)言的智能系統(tǒng),以用于智能客服回答各種復(fù)雜的問(wèn)題時(shí),以下哪種技術(shù)或方法通常是關(guān)鍵的基礎(chǔ)?()A.詞法分析B.句法分析C.語(yǔ)義理解D.語(yǔ)用分析6、深度學(xué)習(xí)在圖像識(shí)別領(lǐng)域取得了顯著的成果。假設(shè)我們正在訓(xùn)練一個(gè)深度神經(jīng)網(wǎng)絡(luò)來(lái)識(shí)別不同種類的動(dòng)物。如果訓(xùn)練數(shù)據(jù)中某些動(dòng)物類別的樣本數(shù)量過(guò)少,可能會(huì)導(dǎo)致什么問(wèn)題?()A.模型過(guò)擬合B.模型欠擬合C.訓(xùn)練速度加快D.模型的準(zhǔn)確率提高7、人工智能中的智能監(jiān)控系統(tǒng)在安防、交通等領(lǐng)域發(fā)揮著重要作用。假設(shè)我們要在一個(gè)大型商場(chǎng)部署智能監(jiān)控系統(tǒng),以下關(guān)于智能監(jiān)控的功能,哪一項(xiàng)是不準(zhǔn)確的?()A.實(shí)時(shí)檢測(cè)異常行為B.自動(dòng)識(shí)別人員身份C.預(yù)測(cè)潛在的安全威脅D.智能監(jiān)控系統(tǒng)不需要考慮隱私保護(hù)問(wèn)題8、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)手段。以下關(guān)于遷移學(xué)習(xí)的描述,不正確的是()A.遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型和知識(shí),在新的任務(wù)和數(shù)據(jù)上進(jìn)行微調(diào)B.遷移學(xué)習(xí)能夠減少新任務(wù)中的數(shù)據(jù)標(biāo)注工作量和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)只能在相似的領(lǐng)域和任務(wù)中應(yīng)用,無(wú)法跨越不同的領(lǐng)域D.合理運(yùn)用遷移學(xué)習(xí)可以提高模型的泛化能力和性能9、假設(shè)要構(gòu)建一個(gè)能夠自主學(xué)習(xí)并改進(jìn)其性能的人工智能圖像識(shí)別系統(tǒng),用于識(shí)別不同種類的動(dòng)物。在訓(xùn)練過(guò)程中,需要處理大量的圖像數(shù)據(jù),以下哪種機(jī)器學(xué)習(xí)算法可能最為適合?()A.決策樹(shù)B.支持向量機(jī)C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.樸素貝葉斯10、人工智能中的機(jī)器翻譯是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。假設(shè)我們要將一段中文文本翻譯成英文,以下關(guān)于機(jī)器翻譯的挑戰(zhàn),哪一項(xiàng)是不正確的?()A.詞匯的多義性B.語(yǔ)法結(jié)構(gòu)的差異C.文化背景的不同D.機(jī)器翻譯的質(zhì)量已經(jīng)超越了人類翻譯11、人工智能中的強(qiáng)化學(xué)習(xí)算法可以分為基于值函數(shù)的方法和基于策略的方法。以下關(guān)于這兩種方法的描述,不正確的是()A.基于值函數(shù)的方法通過(guò)估計(jì)狀態(tài)值或動(dòng)作值來(lái)選擇最優(yōu)動(dòng)作B.基于策略的方法直接學(xué)習(xí)策略函數(shù),輸出動(dòng)作的概率分布C.基于值函數(shù)的方法和基于策略的方法不能結(jié)合使用,只能選擇其一D.這兩種方法各有優(yōu)缺點(diǎn),在不同的應(yīng)用場(chǎng)景中表現(xiàn)不同12、在人工智能的圖像識(shí)別領(lǐng)域,除了卷積神經(jīng)網(wǎng)絡(luò),還有其他一些方法和技術(shù)。假設(shè)我們要對(duì)衛(wèi)星圖像中的地物進(jìn)行分類,以下哪種方法可能會(huì)與卷積神經(jīng)網(wǎng)絡(luò)結(jié)合使用,以提高分類效果?()A.支持向量機(jī)B.決策樹(shù)C.聚類分析D.以上都有可能13、人工智能中的模型評(píng)估指標(biāo)對(duì)于衡量模型性能至關(guān)重要。假設(shè)要評(píng)估一個(gè)二分類模型的性能,除了準(zhǔn)確率之外,以下哪種指標(biāo)在某些情況下更能反映模型的實(shí)際效果,特別是當(dāng)類別分布不均衡時(shí)?()A.召回率B.F1值C.精確率D.均方誤差14、在人工智能的算法中,遺傳算法是一種基于自然選擇和遺傳機(jī)制的優(yōu)化算法??紤]一個(gè)優(yōu)化問(wèn)題,需要在一個(gè)復(fù)雜的搜索空間中找到最優(yōu)解。以下關(guān)于遺傳算法的描述,哪一項(xiàng)是不正確的?()A.遺傳算法通過(guò)模擬生物進(jìn)化過(guò)程來(lái)尋找最優(yōu)解B.遺傳算法容易陷入局部最優(yōu)解C.遺傳算法對(duì)于大規(guī)模的優(yōu)化問(wèn)題具有較好的性能D.遺傳算法的搜索過(guò)程是隨機(jī)的,沒(méi)有任何規(guī)律可循15、人工智能中的優(yōu)化算法用于訓(xùn)練模型和尋找最優(yōu)解。假設(shè)要訓(xùn)練一個(gè)復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,以下哪種優(yōu)化算法可能最為有效?()A.隨機(jī)梯度下降(SGD)算法,簡(jiǎn)單直接,適用于各種模型B.自適應(yīng)矩估計(jì)(Adam)算法,能夠自動(dòng)調(diào)整學(xué)習(xí)率,收斂速度快C.牛頓法,計(jì)算精度高,但計(jì)算復(fù)雜度大,不適合大規(guī)模數(shù)據(jù)D.以上算法的效果取決于具體的問(wèn)題和模型結(jié)構(gòu),需要進(jìn)行實(shí)驗(yàn)和比較16、在人工智能的圖像生成任務(wù)中,變分自編碼器(VAE)是一種常用的模型。假設(shè)要使用VAE生成新的圖像,以下關(guān)于VAE的描述,正確的是:()A.VAE通過(guò)學(xué)習(xí)數(shù)據(jù)的潛在分布來(lái)生成新的圖像,生成的圖像與原始數(shù)據(jù)完全相同B.VAE生成的圖像質(zhì)量不如生成對(duì)抗網(wǎng)絡(luò)(GAN),因此在實(shí)際應(yīng)用中逐漸被淘汰C.VAE可以在生成圖像的同時(shí)對(duì)圖像進(jìn)行壓縮和編碼,節(jié)省存儲(chǔ)空間D.VAE只能用于生成簡(jiǎn)單的圖像,如數(shù)字和幾何圖形,無(wú)法生成復(fù)雜的自然圖像17、人工智能中的智能監(jiān)控系統(tǒng)可以對(duì)視頻內(nèi)容進(jìn)行分析。假設(shè)要在一個(gè)公共場(chǎng)所的監(jiān)控系統(tǒng)中檢測(cè)異常行為,以下哪個(gè)因素對(duì)于檢測(cè)的準(zhǔn)確性至關(guān)重要?()A.監(jiān)控?cái)z像頭的分辨率B.視頻數(shù)據(jù)的存儲(chǔ)方式C.算法對(duì)異常行為的定義和建模D.網(wǎng)絡(luò)帶寬18、在人工智能的聯(lián)邦學(xué)習(xí)中,假設(shè)多個(gè)參與方需要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個(gè)模型。以下哪種技術(shù)或機(jī)制能夠確保數(shù)據(jù)的安全性和隱私性?()A.加密技術(shù),對(duì)數(shù)據(jù)和模型參數(shù)進(jìn)行加密傳輸和計(jì)算B.數(shù)據(jù)匿名化,去除數(shù)據(jù)中的敏感信息C.建立可信的第三方機(jī)構(gòu)進(jìn)行數(shù)據(jù)管理D.不采取任何措施,直接共享原始數(shù)據(jù)19、人工智能中的語(yǔ)音識(shí)別技術(shù)在智能語(yǔ)音交互中起著重要作用。假設(shè)我們要提高語(yǔ)音識(shí)別系統(tǒng)在嘈雜環(huán)境下的性能,以下關(guān)于解決方法的說(shuō)法,哪一項(xiàng)是不正確的?()A.使用更先進(jìn)的聲學(xué)模型B.增加訓(xùn)練數(shù)據(jù)的多樣性C.降低語(yǔ)音信號(hào)的采樣率D.采用噪聲抑制技術(shù)20、深度學(xué)習(xí)模型在圖像識(shí)別任務(wù)中取得了顯著的成果。假設(shè)要訓(xùn)練一個(gè)深度卷積神經(jīng)網(wǎng)絡(luò)來(lái)識(shí)別不同種類的動(dòng)物,以下關(guān)于模型訓(xùn)練的描述,正確的是:()A.增加網(wǎng)絡(luò)的層數(shù)一定能提高模型的識(shí)別準(zhǔn)確率,層數(shù)越多越好B.訓(xùn)練數(shù)據(jù)的數(shù)量和質(zhì)量對(duì)模型的性能影響不大,關(guān)鍵在于網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計(jì)C.模型在訓(xùn)練集上的準(zhǔn)確率很高,但在測(cè)試集上的準(zhǔn)確率很低,可能是出現(xiàn)了過(guò)擬合現(xiàn)象D.深度學(xué)習(xí)模型不需要進(jìn)行調(diào)參和優(yōu)化,直接使用默認(rèn)參數(shù)就能得到較好的結(jié)果二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋金融領(lǐng)域中人工智能的作用。2、(本題5分)說(shuō)明人工智能在社會(huì)輿論監(jiān)測(cè)和引導(dǎo)中的方法。3、(本題5分)簡(jiǎn)述人工智能在智能質(zhì)量標(biāo)準(zhǔn)制定中的技術(shù)。4、(本題5分)說(shuō)明人工智能在社會(huì)創(chuàng)新和可持續(xù)發(fā)展解決方案中的潛力。5、(本題5分)簡(jiǎn)述人工智能在社會(huì)創(chuàng)新生態(tài)系統(tǒng)構(gòu)建中的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)剖析某智能民間音樂(lè)文化產(chǎn)業(yè)發(fā)展策略制定系統(tǒng)中人工智能的策略科學(xué)性和可持續(xù)性。2、(本題5分)研究一個(gè)使用人工智能的智能戲曲唱腔分析系統(tǒng),分析其如何解析唱腔特點(diǎn)和流派風(fēng)格。3、(本題5分)考察一個(gè)基于人工智能的智能音樂(lè)人才評(píng)估與發(fā)展系統(tǒng),討論其如何評(píng)估音樂(lè)人才的潛力和發(fā)展方向。4、(本題5分)剖析某智能民間音樂(lè)演奏技巧評(píng)估系統(tǒng)中人工智能的精準(zhǔn)度和提升建議。5、(本題5分)以某智能皮影戲表演優(yōu)化系統(tǒng)為例,探討人工智能在動(dòng)作流暢性和劇情吸引

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論