




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆福建省龍巖市高三數(shù)學(xué)試題二模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則A. B. C. D.2.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.3.已知x,y滿足不等式,且目標(biāo)函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]4.設(shè)命題:,,則為A., B.,C., D.,5.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.6.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.7.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.8.在中,為中點(diǎn),且,若,則()A. B. C. D.9.已知,則的大小關(guān)系為A. B. C. D.10.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測呈陽性的概率均為()且相互獨(dú)立,該家庭至少檢測了5個(gè)人才能確定為“感染高危戶”的概率為,當(dāng)時(shí),最大,則()A. B. C. D.11.已知雙曲線C:()的左、右焦點(diǎn)分別為,過的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.12.空氣質(zhì)量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質(zhì)量越好,下圖是某市10月1日-20日指數(shù)變化趨勢,下列敘述錯(cuò)誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上(指數(shù))的天數(shù)占C.該市10月的前半個(gè)月的空氣質(zhì)量越來越好D.總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好二、填空題:本題共4小題,每小題5分,共20分。13.平面向量,,(R),且與的夾角等于與的夾角,則.14.設(shè)滿足約束條件且的最小值為7,則=_________.15.在數(shù)列中,,則數(shù)列的通項(xiàng)公式_____.16.在中,若,則的范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知中心在原點(diǎn)的橢圓的左焦點(diǎn)為,與軸正半軸交點(diǎn)為,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)作斜率為、的兩條直線分別交于異于點(diǎn)的兩點(diǎn)、.證明:當(dāng)時(shí),直線過定點(diǎn).18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程;(2)若曲線與直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為,求的值.19.(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,,為正實(shí)數(shù),且,證明:.20.(12分)已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為等差數(shù)列{an}的前n項(xiàng)和,.(1)求數(shù)列{an}的通項(xiàng)an;(2)設(shè)bn=an?3n,求數(shù)列{bn}的前n項(xiàng)和Tn.21.(12分)已知函數(shù)存在一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).(1)求實(shí)數(shù)a的取值范圍;(2)若函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為和,且,求實(shí)數(shù)a的取值范圍.(e是自然對(duì)數(shù)的底數(shù))22.(10分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時(shí)要先將參與運(yùn)算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.2.B【解析】
首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查定積分的概念與計(jì)算,屬于中等題.3.B【解析】
作出可行域,對(duì)t進(jìn)行分類討論分析目標(biāo)函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當(dāng)t≤2時(shí),可行域即為如圖中的△OAM,此時(shí)目標(biāo)函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時(shí)可知目標(biāo)函數(shù)Z=9x+6y在的交點(diǎn)()處取得最大值,此時(shí)Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點(diǎn)睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標(biāo)函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標(biāo)函數(shù)的最大值最優(yōu)解的處理辦法.4.D【解析】
直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因?yàn)槿Q命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點(diǎn)睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.5.B【解析】
先根據(jù)復(fù)數(shù)的乘法計(jì)算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算以及共軛復(fù)數(shù)的概念,難度較易.6.D【解析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點(diǎn)睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.7.A【解析】
設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點(diǎn),∴直線的方程為:,即,故選:A.【點(diǎn)睛】本題考查直線與拋物線相交的中點(diǎn)弦問題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.8.B【解析】
選取向量,為基底,由向量線性運(yùn)算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.9.D【解析】
分析:由題意結(jié)合對(duì)數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計(jì)算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項(xiàng).點(diǎn)睛:對(duì)于指數(shù)冪的大小的比較,我們通常都是運(yùn)用指數(shù)函數(shù)的單調(diào)性,但很多時(shí)候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進(jìn)行比較.這就必須掌握一些特殊方法.在進(jìn)行指數(shù)冪的大小比較時(shí),若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷.對(duì)于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準(zhǔn)確.10.A【解析】
根據(jù)題意分別求出事件A:檢測5個(gè)人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個(gè)人確定為“感染高危戶”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測5個(gè)人確定為“感染高危戶”,事件B:檢測6個(gè)人確定為“感染高危戶”,∴,.即設(shè),則∴當(dāng)且僅當(dāng)即時(shí)取等號(hào),即.故選:A.【點(diǎn)睛】本題主要考查概率的計(jì)算,涉及相互獨(dú)立事件同時(shí)發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對(duì)題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和數(shù)學(xué)建模能力,屬于較難題.11.D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.12.C【解析】
結(jié)合題意,根據(jù)題目中的天的指數(shù)值,判斷選項(xiàng)中的命題是否正確.【詳解】對(duì)于,由圖可知天的指數(shù)值中有個(gè)低于,個(gè)高于,其中第個(gè)接近,第個(gè)高于,所以中位數(shù)略高于,故正確.對(duì)于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對(duì)于,由圖可知該市月的前天的空氣質(zhì)量越來越好,從第天到第天空氣質(zhì)量越來越差,故錯(cuò)誤.對(duì)于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好,故正確.故選:【點(diǎn)睛】本題考查了對(duì)折線圖數(shù)據(jù)的分析,讀懂題意是解題關(guān)鍵,并能運(yùn)用所學(xué)知識(shí)對(duì)命題進(jìn)行判斷,本題較為基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】試題分析:,與的夾角等于與的夾角,所以考點(diǎn):向量的坐標(biāo)運(yùn)算與向量夾角14.3【解析】
根據(jù)約束條件畫出可行域,再把目標(biāo)函數(shù)轉(zhuǎn)化為,對(duì)參數(shù)a分類討論,當(dāng)時(shí)顯然不滿足題意;當(dāng)時(shí),直線經(jīng)過可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,再由最小值為7,得出結(jié)果;當(dāng)時(shí),的截距沒有最小值,即z沒有最小值;當(dāng)時(shí),的截距沒有最大值,即z沒有最小值,綜上可得出結(jié)果.【詳解】根據(jù)約束條件畫出可行域如下:由,可得出交點(diǎn),由可得,當(dāng)時(shí)顯然不滿足題意;當(dāng)即時(shí),由可行域可知當(dāng)直線經(jīng)過可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,即,解得或(舍);當(dāng)即時(shí),由可行域可知的截距沒有最小值,即z沒有最小值;當(dāng)即時(shí),根據(jù)可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時(shí).故答案為:3.【點(diǎn)睛】本題主要考查線性規(guī)劃問題,約束條件和目標(biāo)函數(shù)中都有參數(shù),要對(duì)參數(shù)進(jìn)行討論.15.【解析】
由題意可得,又,數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,對(duì)分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項(xiàng)公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,∴當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),則為奇數(shù),∴,∴數(shù)列的通項(xiàng)公式,故答案為:.【點(diǎn)睛】本題考查求數(shù)列的通項(xiàng)公式,解題關(guān)鍵是由已知遞推關(guān)系得出,從而確定數(shù)列的奇數(shù)項(xiàng)成等差數(shù)列,求出通項(xiàng)公式后再由已知求出偶數(shù)項(xiàng),要注意結(jié)果是分段函數(shù)形式.16.【解析】
借助正切的和角公式可求得,即則通過降冪擴(kuò)角公式和輔助角公式可化簡,由,借助正弦型函數(shù)的圖象和性質(zhì)即可解得所求.【詳解】,所以,.因?yàn)椋裕?故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)的化簡,重點(diǎn)考查學(xué)生的計(jì)算能力,難度一般.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析.【解析】
(1)在中,計(jì)算出的值,可得出的值,進(jìn)而可得出的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、,設(shè)直線的方程為,將該直線方程與橢圓方程聯(lián)立,列出韋達(dá)定理,根據(jù)已知條件得出,利用韋達(dá)定理和斜率公式化簡得出與所滿足的關(guān)系式,代入直線的方程,即可得出直線所過定點(diǎn)的坐標(biāo).【詳解】(1)在中,,,,,,,,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)由題不妨設(shè),設(shè)點(diǎn),聯(lián)立,消去化簡得,且,,,,,∴代入,化簡得,化簡得,,,,直線,因此,直線過定點(diǎn).【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中直線過定點(diǎn)的問題,考查計(jì)算能力,屬于中等題.18.(1)(2)5【解析】
(1)首先消去參數(shù)得到曲線的普通方程,再根據(jù),,得到曲線的極坐標(biāo)方程;(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用直線的參數(shù)方程中參數(shù)的幾何意義得解;【詳解】解:(1)曲線:消去參數(shù)得到:,由,,得所以(2)代入,設(shè),,由直線的參數(shù)方程參數(shù)的幾何意義得:【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程、普通方程的互化,以及直線參數(shù)方程的幾何意義的應(yīng)用,屬于中檔題.19.(1)(2)證明見解析【解析】
(1)分類討論,去絕對(duì)值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以當(dāng)時(shí),取最小值.(2)證明:由(1)可知.要證明:,即證,因?yàn)椋瑸檎龑?shí)數(shù),所以.當(dāng)且僅當(dāng),即,,時(shí)取等號(hào),所以.【點(diǎn)睛】本題考查絕對(duì)值不等式和基本不等式的應(yīng)用,還運(yùn)用“乘1法”和分類討論思想,屬于中檔題.20.(1).(2)【解析】
(1)先設(shè)等差數(shù)列{an}的公差為d(d>0),然后根據(jù)等差數(shù)列的通項(xiàng)公式及已知條件可列出關(guān)于d的方程,解出d的值,即可得到數(shù)列{an}的通項(xiàng)an;(2)先根據(jù)第(1)題的結(jié)果計(jì)算出數(shù)列{bn}的通項(xiàng)公式,然后運(yùn)用錯(cuò)位相減法計(jì)算前n項(xiàng)和Tn.【詳解】(1)由題意,設(shè)等差數(shù)列{an}的公差為d(d>0),則a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an?3n?3n=(2n+1)?3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)?3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)?3n﹣1+(2n+1)?3n,兩式相減,可得:﹣2Tn=3×1+2×31+2×32+…+2?3n﹣1﹣(2n+1)?3n=3+2×(31+32
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山西財(cái)貿(mào)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))歷年真題考點(diǎn)含答案解析
- 2025年安陽幼兒師范高等專科學(xué)校高職單招高職單招英語2016-2024歷年頻考點(diǎn)試題含答案解析
- 2025年安慶職業(yè)技術(shù)學(xué)院高職單招高職單招英語2016-2024歷年頻考點(diǎn)試題含答案解析
- 烤肉餐飲類模板
- 心理健康教育自我認(rèn)識(shí)
- 根管預(yù)備護(hù)理配合
- 人教版數(shù)學(xué)小學(xué)六年級(jí)下冊《第七課圖形與位置》練習(xí)
- 山東建筑大學(xué)《水工鋼筋混凝土結(jié)構(gòu)及鋼結(jié)構(gòu)》2023-2024學(xué)年第二學(xué)期期末試卷
- 溫州職業(yè)技術(shù)學(xué)院《周易》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年甘肅省定西市岷縣二中高三英語試題第四次月考試卷含解析
- 天津市南開區(qū)2024-2025學(xué)年高三下學(xué)期質(zhì)量監(jiān)測(一)地理試卷(原卷版+解析版)
- 【原創(chuàng)】學(xué)校書記中央八項(xiàng)規(guī)定精神學(xué)習(xí)心得
- 2025年商丘職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫含答案
- 2025年榆林城市投資經(jīng)營集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 液氯鋼瓶應(yīng)急堵漏工具操作指導(dǎo)規(guī)程
- 自然辯證法知到課后答案智慧樹章節(jié)測試答案2025年春浙江大學(xué)
- 2025新人教版七年級(jí)歷史下教案-第20課 明清時(shí)期社會(huì)經(jīng)濟(jì)的發(fā)展
- 股份制合作協(xié)議及企業(yè)章程草案
- 第二節(jié)歐洲西部
- 一年級(jí)100道口算題
- 天貓?zhí)詫毜赇佭\(yùn)營每日巡店必做的事
評(píng)論
0/150
提交評(píng)論